论文标题
来自子代代数的代数(超高)可集成性在通用代数中
Algebraic (super-)integrability from commutants of subalgebras in universal enveloping algebras
论文作者
论文摘要
从给定的谎言代数的通用包膜代数中的纯代数程序开始,提出了代数汉密尔顿人的概念和产生多项式对称代数的运动的概念。详细讨论了特殊线性谎言$ \ mathfrak {sl}(n)$的情况,其中获得了相对于cartan subegerbra的委托人的明确基础,并计算了多项式代数的顺序。进一步表明,通过适当实现$ \ mathfrak {sl}(n)$,这提供了与$(n-1)$ - dimensional $ \ mathbb {s} s}^{n-1} $及相关的racah algebra $ r(n)$(n)$ r(n)$(n-1)$ - dimementional $ r(n)$(n)$ R(n)$的明确连接。特别是,我们明确地展示了如何从$ 2 $ - 秒和$ 3 $ -SPHERE以及相关的对称代数上的模型,可以从由$ \ Mathfrak {sl}(3)(3)$ $ \ slak oskfra of the engebra代数中定义的换向物产生的二次和立方多项式代数获得。该结构是在古典(或泊松)上下文中执行的,其中Berezin支架取代了换向器。
Starting from a purely algebraic procedure based on the commutant of a subalgebra in the universal enveloping algebra of a given Lie algebra, the notion of algebraic Hamiltonians and the constants of the motion generating a polynomial symmetry algebra is proposed. The case of the special linear Lie algebra $\mathfrak{sl}(n)$ is discussed in detail, where an explicit basis for the commutant with respect to the Cartan subalgebra is obtained, and the order of the polynomial algebra is computed. It is further shown that, with an appropriate realization of $\mathfrak{sl}(n)$, this provides an explicit connection with the generic superintegrable model on the $(n-1)$-dimensional sphere $\mathbb{S}^{n-1}$ and the related Racah algebra $R(n)$. In particular, we show explicitly how the models on the $2$-sphere and $3$-sphere and the associated symmetry algebras can be obtained from the quadratic and cubic polynomial algebras generated by the commutants defined in the enveloping algebra of $\mathfrak{sl}(3)$ and $\mathfrak{sl}(4)$, respectively. The construction is performed in the classical (or Poisson-Lie) context, where the Berezin bracket replaces the commutator.