论文标题
同上:超级像素引导损失,用于改进内窥镜检查中的多模式分割
SUPRA: Superpixel Guided Loss for Improved Multi-modal Segmentation in Endoscopy
论文作者
论文摘要
域转移是医学成像界的一个众所周知的问题。特别是,对于内窥镜图像分析,数据可以具有不同的方式,深度学习方法(DL)方法会受到不利影响。换句话说,在一种模态上开发的方法不能用于不同的模态。但是,在实际的临床环境中,内窥镜医生在模态之间切换以获得更好的粘膜可视化。在本文中,我们探讨了域泛化技术,以使DL方法在这种情况下使用。为此,我们建议使用用简单的线性迭代聚类(SLIC)生成的超级像素,我们称其为“ Supra”,用于Superpixel增强方法。 Supra首先使用我们的新损失“ slicloss”生成了初步的分割面具,从而鼓励了准确和颜色一致的分割。我们证明,与二进制跨熵损失(BCE)结合使用时,Slicloss可以通过呈现出明显的域移位的数据来改善模型的普遍性。我们使用Endouda数据集验证了香草U-NET上的这种新颖的复合损失,该数据集包含Barret食管的图像和两种模态的息肉。我们表明,与基线相比,我们的方法在目标结构域中的提高了近20%。
Domain shift is a well-known problem in the medical imaging community. In particular, for endoscopic image analysis where the data can have different modalities the performance of deep learning (DL) methods gets adversely affected. In other words, methods developed on one modality cannot be used for a different modality. However, in real clinical settings, endoscopists switch between modalities for better mucosal visualisation. In this paper, we explore the domain generalisation technique to enable DL methods to be used in such scenarios. To this extend, we propose to use super pixels generated with Simple Linear Iterative Clustering (SLIC) which we refer to as "SUPRA" for SUPeRpixel Augmented method. SUPRA first generates a preliminary segmentation mask making use of our new loss "SLICLoss" that encourages both an accurate and color-consistent segmentation. We demonstrate that SLICLoss when combined with Binary Cross Entropy loss (BCE) can improve the model's generalisability with data that presents significant domain shift. We validate this novel compound loss on a vanilla U-Net using the EndoUDA dataset, which contains images for Barret's Esophagus and polyps from two modalities. We show that our method yields an improvement of nearly 20% in the target domain set compared to the baseline.