论文标题

从天气雷达数据中的物理信息推理了空中动物运动

Physics-informed inference of aerial animal movements from weather radar data

论文作者

Lippert, Fiona, Kranstauber, Bart, van Loon, E. Emiel, Forré, Patrick

论文摘要

研究动物运动对于有效的野生动植物保护和缓解冲突至关重要。对于空中移动,在这方面,操作天气​​雷达已成为必不可少的数据源。但是,部分测量,不完整的空间覆盖范围和对动物行为的不良理解使得很难从可用的雷达数据中重建完整的时空运动模式。我们通过学习从高维雷达测量值到使用卷积编码器的低维潜图来解决这个反问题。假设潜在系统动力学通过局部线性高斯过渡模型很好地近似,我们使用经典的卡尔曼(Kalman)进行有效的后验估计。卷积解码器将推断的潜在系统状态映射回可应用已知雷达观察模型的物理空间,从而实现了完全无监督的训练。为了鼓励身体的一致性,我们还引入了一个具有物理信息的损失项,该损失术语利用已知的质量保护限制。我们对合成雷达数据的实验在重建质量和数据效率方面表明了有希望的结果。

Studying animal movements is essential for effective wildlife conservation and conflict mitigation. For aerial movements, operational weather radars have become an indispensable data source in this respect. However, partial measurements, incomplete spatial coverage, and poor understanding of animal behaviours make it difficult to reconstruct complete spatio-temporal movement patterns from available radar data. We tackle this inverse problem by learning a mapping from high-dimensional radar measurements to low-dimensional latent representations using a convolutional encoder. Under the assumption that the latent system dynamics are well approximated by a locally linear Gaussian transition model, we perform efficient posterior estimation using the classical Kalman smoother. A convolutional decoder maps the inferred latent system states back to the physical space in which the known radar observation model can be applied, enabling fully unsupervised training. To encourage physical consistency, we additionally introduce a physics-informed loss term that leverages known mass conservation constraints. Our experiments on synthetic radar data show promising results in terms of reconstruction quality and data-efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源