论文标题

量化门误对量子化学变异量子本质体的影响

Quantifying the effect of gate errors on variational quantum eigensolvers for quantum chemistry

论文作者

Dalton, Kieran, Long, Christopher K., Yordanov, Yordan S., Smith, Charles G., Barnes, Crispin H. W., Mertig, Normann, Arvidsson-Shukur, David R. M.

论文摘要

变分量子本素(VQE)是候选者,以证明近期量子优势。在这里,我们对一系列分子进行了基于栅极的VQS的密度矩阵模拟。我们从数值上量化了它们的可耐受性去极化栅极的水平。我们发现:(i)表现最佳的VQE需要$ 10^{ - 6} $和$ 10^{ - 4} $($ 10^{ - 4} $和$ 10^{ - 4} $和$ 10^{ - 2} $的$ 10^{ - 2} $使用错误缓解),以在化学准确性,地基于底层的小对象,与4-14 $ 4-14 $ 4-14 $ 4-14 $ 4-14 $ 4-14 $ 4-14 $ 4-14 $ 4-14。 (ii)构造Ansatz循环的Adapt-VQE迭代固定电路VQE。 (iii)适应性VQE的表现更好,其电路是由闸门效率而不是物理动机元素构成的。 (iv)任何VQE的最大允许的门概率,$ p_c $,以实现化学精度,随着数字$ \ ncx $ noisy dqubit的大门为$ \ ncx $,为$ p_c \ loctprop \ loctprop \ ncx^{ - 1} $。此外,$ p_c $随着系统大小而减小,即使有误差缓解,这意味着较大的分子甚至需要较低的栅极错误。因此,除非通过数量级降低栅极误差概率,否则不太可能通过基于门的VQE进行量子优势。

Variational quantum eigensolvers (VQEs) are leading candidates to demonstrate near-term quantum advantage. Here, we conduct density-matrix simulations of leading gate-based VQEs for a range of molecules. We numerically quantify their level of tolerable depolarizing gate-errors. We find that: (i) The best-performing VQEs require gate-error probabilities between $10^{-6}$ and $10^{-4}$ ( $10^{-4}$ and $10^{-2}$ with error mitigation) to predict, within chemical accuracy, ground-state energies of small molecules with $4-14$ orbitals. (ii) ADAPT-VQEs that construct ansatz circuits iteratively outperform fixed-circuit VQEs. (iii) ADAPT-VQEs perform better with circuits constructed from gate-efficient rather than physically-motivated elements. (iv) The maximally-allowed gate-error probability, $p_c$, for any VQE to achieve chemical accuracy decreases with the number $\ncx$ of noisy two-qubit gates as $p_c\approxprop\ncx^{-1}$. Additionally, $p_c$ decreases with system size, even with error mitigation, implying that larger molecules require even lower gate-errors. Thus, quantum advantage via gate-based VQEs is unlikely unless gate-error probabilities are decreased by orders of magnitude.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源