论文标题

在移动设备上有效的单图像估计,移动AI和AIM 2022挑战:报告

Efficient Single-Image Depth Estimation on Mobile Devices, Mobile AI & AIM 2022 Challenge: Report

论文作者

Ignatov, Andrey, Malivenko, Grigory, Timofte, Radu, Treszczotko, Lukasz, Chang, Xin, Ksiazek, Piotr, Lopuszynski, Michal, Pioro, Maciej, Rudnicki, Rafal, Smyl, Maciej, Ma, Yujie, Li, Zhenyu, Chen, Zehui, Xu, Jialei, Liu, Xianming, Jiang, Junjun, Shi, XueChao, Xu, Difan, Li, Yanan, Wang, Xiaotao, Lei, Lei, Zhang, Ziyu, Wang, Yicheng, Huang, Zilong, Luo, Guozhong, Yu, Gang, Fu, Bin, Li, Jiaqi, Wang, Yiran, Huang, Zihao, Cao, Zhiguo, Conde, Marcos V., Sapozhnikov, Denis, Lee, Byeong Hyun, Park, Dongwon, Hong, Seongmin, Lee, Joonhee, Lee, Seunggyu, Chun, Se Young

论文摘要

现在,各种深度估计模型现在已广泛用于许多移动和物联网设备,用于图像分割,散景效果渲染,对象跟踪和许多其他移动任务。因此,具有有效,准确的深度估计模型至关重要,该模型可以在低功率移动芯片组上快速运行。在此移动AI挑战中,目标是开发基于深度学习的单图估计解决方案,这些解决方案可以在IoT平台和智能手机上显示实时性能。为此,参与者使用了一个大规模的RGB至深度数据集,该数据集使用ZED立体声摄像机收集,能够为位于50米处的对象生成深度图。在Raspberry Pi 4平台上评估了所有模型的运行时间,在此,开发的解决方案能够以高达27 fps的形式生成VGA分辨率深度图,同时实现高忠诚度结果。挑战中开发的所有模型也与任何基于Android或Linux的移动设备兼容,本文提供了它们的详细描述。

Various depth estimation models are now widely used on many mobile and IoT devices for image segmentation, bokeh effect rendering, object tracking and many other mobile tasks. Thus, it is very crucial to have efficient and accurate depth estimation models that can run fast on low-power mobile chipsets. In this Mobile AI challenge, the target was to develop deep learning-based single image depth estimation solutions that can show a real-time performance on IoT platforms and smartphones. For this, the participants used a large-scale RGB-to-depth dataset that was collected with the ZED stereo camera capable to generated depth maps for objects located at up to 50 meters. The runtime of all models was evaluated on the Raspberry Pi 4 platform, where the developed solutions were able to generate VGA resolution depth maps at up to 27 FPS while achieving high fidelity results. All models developed in the challenge are also compatible with any Android or Linux-based mobile devices, their detailed description is provided in this paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源