论文标题

Tinyml的评论

A review of TinyML

论文作者

Yelchuri, Harsha, R, Rashmi

论文摘要

在当前的技术世界中,机器学习的应用变得无处不在。现在,由于物联网(IoT)和边缘计算的组合,可以在边缘级别上将机器学习算法纳入边缘级别的机器学习算法。为了估计结果,传统的机器学习需要大量资源。用于嵌入式机器学习的Tinyml概念试图将这种多样性从通常的高端方法推向低端应用程序。 Tinyml是一个迅速扩展的跨学科主题,以机器学习,软件和硬件的融合为中心,以在嵌入式(微控制器驱动)系统上部署深层神经网络模型。 Tinyml将为新颖的边缘级服务和应用程序铺平道路,这些服务在分布式边缘推断和独立决策而不是服务器计算上生存。在本文中,我们探讨了Tinyml的方法论,Tinyml如何使一些特定的工业领域,其障碍及其未来范围受益。

In this current technological world, the application of machine learning is becoming ubiquitous. Incorporating machine learning algorithms on extremely low-power and inexpensive embedded devices at the edge level is now possible due to the combination of the Internet of Things (IoT) and edge computing. To estimate an outcome, traditional machine learning demands vast amounts of resources. The TinyML concept for embedded machine learning attempts to push such diversity from usual high-end approaches to low-end applications. TinyML is a rapidly expanding interdisciplinary topic at the convergence of machine learning, software, and hardware centered on deploying deep neural network models on embedded (micro-controller-driven) systems. TinyML will pave the way for novel edge-level services and applications that survive on distributed edge inferring and independent decision-making rather than server computation. In this paper, we explore TinyML's methodology, how TinyML can benefit a few specific industrial fields, its obstacles, and its future scope.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源