论文标题

对称结构双复制的优点

Virtues of a symmetric-structure double copy

论文作者

Carrasco, John Joseph M., Pavao, Nicolas H.

论文摘要

我们展示了扩展颜色偶或BCJ双拷贝结构的物理动机,以包括与对称结构常数相同的代数关系的运动分子的理论,$ d^{abc} = \ text {tr} {tr}我们验证$ u(n_c)$ nonelear sigma模型(NLSM)培训(llinear sigma模型(nlsm),以抗对称的伴随因子为颜色为颜色,$ f^{abc} $在对称色结构的意义上,$ d^{abc} $也是颜色 - 颜色 - 颜色为颜色。 NLSM Pion振幅的这种重新标记补充了我们$ d^{abc} $ color-dual高级衍生量规操作员的构图结构。借助伴随和对称色 - 双运动运动学,我们可以使用物理理论的振幅通过双拷贝结构范围跨越所有四点有效的光子操作员。我们进一步评论了当地和伴随有效分子之间的张力,以及对具有非附属运动学的重力有效算子的影响。

We demonstrate a physical motivation for extending color-dual or BCJ double-copy construction to include theories with kinematic numerators that obey the same algebraic relations as symmetric structure constants, $d^{abc}=\text{Tr}[\{T^{a},T^{b}\}T^c]$. We verify that $U(N_c)$ nonlinear sigma model (NLSM) pions, long known to be color-dual in terms of antisymmetric adjoint factors, $f^{abc}$, are also color-dual in the sense of symmetric color structures, $d^{abc}$, explicitly through six-point scattering. This reframing of NLSM pion amplitudes complements our compositional construction of $d^{abc}$ color-dual higher derivative gauge operators. With adjoint and symmetric color-dual kinematics, we can span all four-point effective photon operators via a double-copy construction using amplitudes from physical theories. We further comment on a tension between locality and adjoint effective numerators, and the implications for spanning gravitational effective operators with non-adjoint kinematics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源