论文标题
图案指导时间序列反事实解释
Motif-guided Time Series Counterfactual Explanations
论文作者
论文摘要
随着对可解释的机器学习方法的需求不断增加,人类努力有必要对模型决策的影响因素进行多种解释。为了提高基于AI的系统的信任和透明度,出现了可解释的人工智能(XAI)领域。 XAI范式分为两个主要类别:特征归因和反事实解释方法。虽然特征归因方法基于解释模型决策背后的原因,但反事实解释方法发现最小的输入更改将导致不同的决策。在本文中,我们旨在通过使用图案来产生反事实解释来建立时间序列模型的信任和透明度。我们提出了图案引导的反事实解释(MG-CF),该解释是一种新型模型,生成直观的事后反事实解释,该解释充分利用重要主题来在决策过程中提供解释性信息。据我们所知,这是利用主题来指导反事实解释的第一起努力。我们使用UCR存储库中的五个现实世界时序列数据集验证了我们的模型。我们的实验结果表明,与其他竞争性最先进的基准相比,MG-CF在平衡所有理想的反事实解释属性方面具有优势。
With the rising need of interpretable machine learning methods, there is a necessity for a rise in human effort to provide diverse explanations of the influencing factors of the model decisions. To improve the trust and transparency of AI-based systems, the EXplainable Artificial Intelligence (XAI) field has emerged. The XAI paradigm is bifurcated into two main categories: feature attribution and counterfactual explanation methods. While feature attribution methods are based on explaining the reason behind a model decision, counterfactual explanation methods discover the smallest input changes that will result in a different decision. In this paper, we aim at building trust and transparency in time series models by using motifs to generate counterfactual explanations. We propose Motif-Guided Counterfactual Explanation (MG-CF), a novel model that generates intuitive post-hoc counterfactual explanations that make full use of important motifs to provide interpretive information in decision-making processes. To the best of our knowledge, this is the first effort that leverages motifs to guide the counterfactual explanation generation. We validated our model using five real-world time-series datasets from the UCR repository. Our experimental results show the superiority of MG-CF in balancing all the desirable counterfactual explanations properties in comparison with other competing state-of-the-art baselines.