论文标题

羊群:用区块链捍卫联邦学习中的恶意行为

FLock: Defending Malicious Behaviors in Federated Learning with Blockchain

论文作者

Dong, Nanqing, Sun, Jiahao, Wang, Zhipeng, Zhang, Shuoying, Zheng, Shuhao

论文摘要

联合学习(FL)是允许多个数据所有者(客户)协作训练机器学习模型而不会损害数据隐私的一种有希望的方法。但是,现有的FL解决方案通常依靠集中式聚合器进行模型重量聚合,同时假设客户是诚实的。即使仍然可以保留数据隐私,单点失败和恶意客户的数据中毒攻击的问题仍然无法解决。为了应对这一挑战,我们建议使用分布式分类帐技术(DLT)来实现羊群,这是建立在区块链上的安全可靠的分散联合学习系统。为了保证模型质量,我们设计了一种新颖的对等(P2P)评论和奖励/削减机制,以检测和阻止由链接智能合约提供支持的恶意客户。此外,奖励/斜线机制还激励参与者诚实地上传和审查羊群系统中的模型参数。因此,羊群以完全P2P的方式提高了FL系统的性能和鲁棒性。

Federated learning (FL) is a promising way to allow multiple data owners (clients) to collaboratively train machine learning models without compromising data privacy. Yet, existing FL solutions usually rely on a centralized aggregator for model weight aggregation, while assuming clients are honest. Even if data privacy can still be preserved, the problem of single-point failure and data poisoning attack from malicious clients remains unresolved. To tackle this challenge, we propose to use distributed ledger technology (DLT) to achieve FLock, a secure and reliable decentralized Federated Learning system built on blockchain. To guarantee model quality, we design a novel peer-to-peer (P2P) review and reward/slash mechanism to detect and deter malicious clients, powered by on-chain smart contracts. The reward/slash mechanism, in addition, serves as incentives for participants to honestly upload and review model parameters in the FLock system. FLock thus improves the performance and the robustness of FL systems in a fully P2P manner.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源