论文标题
在晶格上相互作用的玻色子的非高斯变化波函数
Non-Gaussian Variational Wavefunctions for Interacting Bosons on the Lattice
论文作者
论文摘要
提出了一种研究强烈相互作用量子多体骨系统的基态的变分方法。我们的方法构建了一类广泛的变异非高斯波函数,通过非线性规范转换(NLCT)在所考虑的理论上扩展高斯状态。我们用一维玻色 - 哈伯德模型说明了这种方法,此处提出的建议在其相互作用强度的任意值中提供了一个近似地面状态的家族。我们发现,对于相互作用的不同值,当系统处于Mott阶段时,非高斯NLCT验证状态明智地改善了基态能量估计。
A variational method for studying the ground state of strongly interacting quantum many-body bosonic systems is presented. Our approach constructs a class of extensive variational non-Gaussian wavefunctions which extend Gaussian states by means of nonlinear canonical transformations (NLCT) on the fields of the theory under consideration. We illustrate this method with the one dimensional Bose-Hubbard model for which the proposal presented here, provides a family of approximate ground states at arbitrarily large values of the interaction strength. We find that, for different values of the interaction, the non-Gaussian NLCT-trial states sensibly improve the ground state energy estimation when the system is in the Mott phase.