论文标题
基于机器学习的框架,用于最佳解决冗余机器的分析逆运动学
Machine Learning-based Framework for Optimally Solving the Analytical Inverse Kinematics for Redundant Manipulators
论文作者
论文摘要
实时解决冗余操纵器的分析逆运动学(IK)是一个难题,因为它的解决方案对于给定目标姿势的解决方案不是唯一的。此外,选择最佳的IK解决方案在特定于应用程序的需求方面有助于提高鲁棒性,并在将操纵器从当前配置推向所需姿势时提高成功率。这是必要的,尤其是在高动力的任务中,例如在飞行中捕获对象。要计算在轨迹计划环境中给定目标姿势的关节空间中合适的目标配置,必须考虑各种因素。但是,这些因素增加了阻碍实时实施的整体问题的复杂性。在本文中,提出了一个实时框架来计算冗余机器人的分析逆运动学。为此,冗余操纵器的分析IK通过所谓的冗余参数进行了参数化,这些冗余参数与目标姿势结合在一起,以产生独特的IK解决方案。文献中的大多数作品要么试图近似从操纵器的所需姿势到IK解决方案的直接映射,要么将整个工作空间群集以找到IK解决方案。相反,提出的框架通过使用神经网络(NN)直接了解这些冗余参数,该神经网络(NN)提供了有关操作性和与当前机器人配置的接近性的最佳IK解决方案。蒙特卡洛模拟显示了所提出的方法的有效性,该方法在KUKA LBR IIWA 14 R820上具有准确且实时的功能($ \ $ \ $ \ si {32} {\ micro \ second})。
Solving the analytical inverse kinematics (IK) of redundant manipulators in real time is a difficult problem in robotics since its solution for a given target pose is not unique. Moreover, choosing the optimal IK solution with respect to application-specific demands helps to improve the robustness and to increase the success rate when driving the manipulator from its current configuration towards a desired pose. This is necessary, especially in high-dynamic tasks like catching objects in mid-flights. To compute a suitable target configuration in the joint space for a given target pose in the trajectory planning context, various factors such as travel time or manipulability must be considered. However, these factors increase the complexity of the overall problem which impedes real-time implementation. In this paper, a real-time framework to compute the analytical inverse kinematics of a redundant robot is presented. To this end, the analytical IK of the redundant manipulator is parameterized by so-called redundancy parameters, which are combined with a target pose to yield a unique IK solution. Most existing works in the literature either try to approximate the direct mapping from the desired pose of the manipulator to the solution of the IK or cluster the entire workspace to find IK solutions. In contrast, the proposed framework directly learns these redundancy parameters by using a neural network (NN) that provides the optimal IK solution with respect to the manipulability and the closeness to the current robot configuration. Monte Carlo simulations show the effectiveness of the proposed approach which is accurate and real-time capable ($\approx$ \SI{32}{\micro\second}) on the KUKA LBR iiwa 14 R820.