论文标题

Chern-Simons系统解决方案的存在和渐近行为和有限图上方程

Existence and asymptotic behaviors of solutions to Chern-Simons systems and equations on finite graphs

论文作者

Hou, Songbo, Kong, Xiaoqing

论文摘要

在本文中,我们考虑了$ \ text {u}(1)(1)\ times \ text {u}(1)$ Abelian Chern-Simons模型\ begin {eqnarray*} \ left \ left { &=λ\ left(a(b-a)\ mathrm {e}^u-b(b-a)\ mathrm {e}^{\ upsilon}+a^2 \ math rm {e}^{2u} -ab \ m \ mathrm {e}^{2 \ upsilon}+b(b-a)\ mathrm {e}^u+++\ upsilon} \ right)+4π\ sum \ limits_ {j = 1}^{k_1}m_jΔ__{p_j},\\ δ\ upsilon&=λ\ left(-b(b-a)\ mathrm {e}^u+a(b-a)\ mathrm {e}^{\ upsilon} -ab \ \ mathrm {e}^{2u}+a^2 \ mathrm {e}^{2 \ upsilon}+b(b-a)\ mathrm {e} \ right)+4π\ sum \ limits_ {j = 1}^{k_2}n_jΔ__{q_j},\ end {aligned} \ right。 \ end {eqnarray*}在有限图上。 Here $λ>0$, $b>a>0$, $m_j>0\, (j=1,2,\cdot\cdot\cdot,k_1)$, $n_j>0\,(j=1,2,\cdot\cdot\cdot,k_2)$, $δ_{p}$ is the Dirac delta mass at vertex $p$. 我们建立迭代方案并证明解决方案的存在。我们还开发了一种新方法,以获取解决方案的渐近行为,因为$λ$变为无限。此方法也适用于Chern-Simons System $$ \ left \ {\ begin {Aligned}ΔU&=λ\ mathrm {e}^{\ upsilon}(\ mathrm {e} +4π\ sum \ limits_ {j = 1}^{k_1}m_jΔ__{p_j},\\ δ\ upsilon&=λ\ mathrm {e}^{u}(\ mathrm {e}^{\ upSilon} -1)+4π\ sum \ sum \ limits_ { $$和经典的Chern-Simons方程$$ΔU=λ\ Mathrm {e}^u(\ Mathrm {e}^u-1)+4π\ sum \ sum \ limits_ {

In this paper, we consider a system of equations arising from the $\text{U}(1)\times \text{U}(1)$ Abelian Chern-Simons model \begin{eqnarray*}\left\{\begin{aligned} Δu &=λ\left(a(b-a)\mathrm{e}^u-b(b-a)\mathrm{e}^{\upsilon}+a^2\mathrm{e}^{2u}-ab\mathrm{e}^{2\upsilon}+b(b-a)\mathrm{e}^{u+\upsilon} \right)+4π\sum\limits_{j=1}^{k_1}m_jδ_{p_j},\\ Δ\upsilon&=λ\left(-b(b-a)\mathrm{e}^u+a(b-a)\mathrm{e}^{\upsilon}-ab\mathrm{e}^{2u}+a^2\mathrm{e}^{2\upsilon}+b(b-a)\mathrm{e}^{u+\upsilon} \right)+4π\sum\limits_{j=1}^{k_2}n_jδ_{q_j}, \end{aligned} \right. \end{eqnarray*} on finite graphs. Here $λ>0$, $b>a>0$, $m_j>0\, (j=1,2,\cdot\cdot\cdot,k_1)$, $n_j>0\,(j=1,2,\cdot\cdot\cdot,k_2)$, $δ_{p}$ is the Dirac delta mass at vertex $p$. We establish the iteration scheme and prove existence of solutions. We also develop a new method to get the asymptotic behaviors of solutions as $λ$ goes to infinity. This method is also applicable to the Chern-Simons system $$\left\{\begin{aligned} Δu &=λ\mathrm{e}^{\upsilon}(\mathrm{e}^{u}-1) +4π\sum\limits_{j=1}^{k_1}m_jδ_{p_j},\\ Δ\upsilon&=λ\mathrm{e}^{u}(\mathrm{e}^{\upsilon}-1)+4π\sum\limits_{j=1}^{k_2}n_jδ_{q_j}, \end{aligned} \right. $$ and the classical Chern-Simons equation $$ Δu=λ\mathrm{e}^u(\mathrm{e}^u-1)+4π\sum\limits_{j=1}^{N}δ_{p_j}.$$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源