论文标题
$ hp $ $弱的Galerkin FEM,用于奇异的问题
An $hp$ Weak Galerkin FEM for singularly perturbed problems
论文作者
论文摘要
我们介绍了$ hp $弱的galerkin-fem的分析,用于一维中奇异的反应反应扩散问题。在数据假设的分析性下,当在能量规范中测量误差时,我们建立了可靠的指数收敛性,因为增加了近似多项式的$ p $。使用光谱边界层网格,这是此类问题的最小(层改编)网格。还提出了说明该理论的数值示例。
We present the analysis for an $hp$ weak Galerkin-FEM for singularly perturbed reaction-convection-diffusion problems in one-dimension. Under the analyticity of the data assumption, we establish robust exponential convergence, when the error is measured in the energy norm, as the degree $p$ of the approximating polynomials is increased. The Spectral Boundary Layer mesh is used, which is the minimal (layer adapted) mesh for such problems. Numerical examples illustrating the theory are also presented.