论文标题

$ hp $ $弱的Galerkin FEM,用于奇异的问题

An $hp$ Weak Galerkin FEM for singularly perturbed problems

论文作者

Linß, Torsten, Xenophontos, Christos

论文摘要

我们介绍了$ hp $弱的galerkin-fem的分析,用于一维中奇异的反应反应扩散问题。在数据假设的分析性下,当在能量规范中测量误差时,我们建立了可靠的指数收敛性,因为增加了近似多项式的$ p $。使用光谱边界层网格,这是此类问题的最小(层改编)网格。还提出了说明该理论的数值示例。

We present the analysis for an $hp$ weak Galerkin-FEM for singularly perturbed reaction-convection-diffusion problems in one-dimension. Under the analyticity of the data assumption, we establish robust exponential convergence, when the error is measured in the energy norm, as the degree $p$ of the approximating polynomials is increased. The Spectral Boundary Layer mesh is used, which is the minimal (layer adapted) mesh for such problems. Numerical examples illustrating the theory are also presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源