论文标题

随机编码的联合学习:理论分析和激励机制设计

Stochastic Coded Federated Learning: Theoretical Analysis and Incentive Mechanism Design

论文作者

Sun, Yuchang, Shao, Jiawei, Mao, Yuyi, Li, Songze, Zhang, Jun

论文摘要

Federated Learning(FL)作为保留隐私的分布式培训范式取得了巨大的成功,许多边缘设备通过共享模型更新而不是与服务器共享模型更新而不是原始数据来协作训练机器学习模型。但是,边缘设备的异质计算和通信资源产生了大大减速训练过程的散乱者。为了减轻此问题,我们提出了一个新型的FL框架,称为随机编码联合学习(SCFL),该框架利用编码的计算技术。在SCFL中,在训练过程开始之前,每个边缘设备将保护隐私的编码数据集上传到服务器,该数据集是通过将高斯噪声添加到预测的本地数据集中生成的。在培训期间,服务器计算全局编码数据集上的梯度,以补偿散落设备的丢失模型更新。我们设计了一个梯度聚合方案,以确保汇总模型更新是对所需全局更新的公正估计。此外,这种聚合方案使定期模型平均以提高训练效率。我们表征了SC​​FL的融合性能与隐私保证之间的权衡。特别是,一个更嘈杂的编码数据集为边缘设备提供了更强的隐私保护,但会导致学习性能降级。我们进一步开发了一种基于合同的激励机制来协调这种冲突。模拟结果表明,SCFL在给定时间内学习了一个更好的模型,并且比基线方法实现了更好的隐私性绩效权衡。此外,提出的激励机制比传统的Stackelberg游戏方法提供了更好的培训表现。

Federated learning (FL) has achieved great success as a privacy-preserving distributed training paradigm, where many edge devices collaboratively train a machine learning model by sharing the model updates instead of the raw data with a server. However, the heterogeneous computational and communication resources of edge devices give rise to stragglers that significantly decelerate the training process. To mitigate this issue, we propose a novel FL framework named stochastic coded federated learning (SCFL) that leverages coded computing techniques. In SCFL, before the training process starts, each edge device uploads a privacy-preserving coded dataset to the server, which is generated by adding Gaussian noise to the projected local dataset. During training, the server computes gradients on the global coded dataset to compensate for the missing model updates of the straggling devices. We design a gradient aggregation scheme to ensure that the aggregated model update is an unbiased estimate of the desired global update. Moreover, this aggregation scheme enables periodical model averaging to improve the training efficiency. We characterize the tradeoff between the convergence performance and privacy guarantee of SCFL. In particular, a more noisy coded dataset provides stronger privacy protection for edge devices but results in learning performance degradation. We further develop a contract-based incentive mechanism to coordinate such a conflict. The simulation results show that SCFL learns a better model within the given time and achieves a better privacy-performance tradeoff than the baseline methods. In addition, the proposed incentive mechanism grants better training performance than the conventional Stackelberg game approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源