论文标题
部分可观测时空混沌系统的无模型预测
Towards Extending the Range of Bugs That Automated Program Repair Can Handle
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Modern automated program repair (APR) is well-tuned to finding and repairing bugs that introduce observable erroneous behavior to a program. However, a significant class of bugs does not lead to such observable behavior (e.g., liveness/termination bugs, non-functional bugs, and information flow bugs). Such bugs can generally not be handled with current APR approaches, so, as a community, we need to develop complementary techniques. To stimulate the systematic study of alternative APR approaches and hybrid APR combinations, we devise a novel bug classification system that enables methodical analysis of their bug detection power and bug repair capabilities. To demonstrate the benefits, we analyze the repair of termination bugs in sequential and concurrent programs. The study shows that integrating dynamic APR with formal analysis techniques, such as termination provers and software model checkers, reduces complexity and improves the overall reliability of these repairs.