论文标题

部分可观测时空混沌系统的无模型预测

Lessons Learned: Surveying the Practicality of Differential Privacy in the Industry

论文作者

Garrido, Gonzalo Munilla, Liu, Xiaoyuan, Matthes, Florian, Song, Dawn

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Since its introduction in 2006, differential privacy has emerged as a predominant statistical tool for quantifying data privacy in academic works. Yet despite the plethora of research and open-source utilities that have accompanied its rise, with limited exceptions, differential privacy has failed to achieve widespread adoption in the enterprise domain. Our study aims to shed light on the fundamental causes underlying this academic-industrial utilization gap through detailed interviews of 24 privacy practitioners across 9 major companies. We analyze the results of our survey to provide key findings and suggestions for companies striving to improve privacy protection in their data workflows and highlight the necessary and missing requirements of existing differential privacy tools, with the goal of guiding researchers working towards the broader adoption of differential privacy. Our findings indicate that analysts suffer from lengthy bureaucratic processes for requesting access to sensitive data, yet once granted, only scarcely-enforced privacy policies stand between rogue practitioners and misuse of private information. We thus argue that differential privacy can significantly improve the processes of requesting and conducting data exploration across silos, and conclude that with a few of the improvements suggested herein, the practical use of differential privacy across the enterprise is within striking distance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源