论文标题
Pauli拓扑子系统代码来自Abelian Anyon Anyon Theiors
Pauli topological subsystem codes from Abelian anyon theories
论文作者
论文摘要
我们构建了Pauli拓扑子系统代码,其特征在于任意二维Abelian Anyon Anyon理论 - 这包括具有退化编织关系的任何人理论,以及那些没有与真空边界差的边界的理论。我们的工作都将二维Pauli拓扑子系统代码的分类扩展到了复合维数系统的系统,并确定该分类至少与Abelian Anyon Anyon They Realies的分类一样丰富。我们用基于$ \ Mathbb {Z} _4^{(1)} $具有简并编织关系的Anyon理论定义的拓扑子系统代码来体现了拓扑子系统代码,并在四维Qudit上定义了构造。该构建是通过“计算”某些任何人类型的拓扑稳定器代码来进行的。这相当于定义由拓扑稳定器代码的稳定器组生成的量规组,以及一组被评估的Anyon类型的NOYONION STRING运算符。由此产生的拓扑子系统代码的特征是任何人的理论,其中包含拓扑稳定器代码的任何人的适当子集。因此,我们表明,每个Abelian Anyon理论都是一堆曲子代码的次级理论,是一系列扭曲的量子双打,可以概括为双半数。我们进一步证明了有关翻译不变拓扑子系统代码的逻辑运算符的许多一般性陈述,并根据高色对称性定义了其相关的任何理论。
We construct Pauli topological subsystem codes characterized by arbitrary two-dimensional Abelian anyon theories--this includes anyon theories with degenerate braiding relations and those without a gapped boundary to the vacuum. Our work both extends the classification of two-dimensional Pauli topological subsystem codes to systems of composite-dimensional qudits and establishes that the classification is at least as rich as that of Abelian anyon theories. We exemplify the construction with topological subsystem codes defined on four-dimensional qudits based on the $\mathbb{Z}_4^{(1)}$ anyon theory with degenerate braiding relations and the chiral semion theory--both of which cannot be captured by topological stabilizer codes. The construction proceeds by "gauging out" certain anyon types of a topological stabilizer code. This amounts to defining a gauge group generated by the stabilizer group of the topological stabilizer code and a set of anyonic string operators for the anyon types that are gauged out. The resulting topological subsystem code is characterized by an anyon theory containing a proper subset of the anyons of the topological stabilizer code. We thereby show that every Abelian anyon theory is a subtheory of a stack of toric codes and a certain family of twisted quantum doubles that generalize the double semion anyon theory. We further prove a number of general statements about the logical operators of translation invariant topological subsystem codes and define their associated anyon theories in terms of higher-form symmetries.