论文标题

TATB孔塌陷机制的能源定位效率

Energy Localization Efficiency in TATB Pore Collapse Mechanisms

论文作者

Hamilton, Brenden W., Germann, Timothy C.

论文摘要

原子和连续尺度的建模工作表明,减震引起的孔隙率可能通过依赖孔形态,冲击波压力和材料特性的广泛机制发生。与在较强的冲击条件下发现的机制相比,在较弱的冲击下发生的机制往往更有效,但不会导致高,绝对温度或空间上的局部定位。然而,能量材料TATB经历了不典型的类似材料的广泛的倒塌机制,留下了塌陷机制,并从倒塌的崩溃所产生的能量定位,即热点,相对未表达。因此,我们提出了TATB中圆柱孔的孔塌陷模拟,以触发多种孔径和电击强度,这些孔尺寸和冲击强度会触发粘膜碎片崩溃,这些粘膜几乎完全垂直于弱冲击和流体动力折叠的冲击方向,这些冲击不会破坏强烈的氢氢键。这些机制的最终热点温度场遵循与其他能量材料有很大不同的趋势。因此,我们将它们在归一化温度值下进行比较,以评估每种机制定位能量的相对效率。还评估了热点的局部分子内应变能,以更好地了解导致潜在势能的现象背后的物理机制。

Atomistic and continuum scale modeling efforts have shown that shock induced collapse of porosity can occur via a wide range of mechanisms dependent on pore morphology, shockwave pressure, and material properties. The mechanisms that occur under weaker shocks tend to be more efficient at localizing thermal energy, but do not result in high, absolute temperatures or spatially large localizations compared to mechanisms found under strong shock conditions. However, the energetic material TATB undergoes a wide range of collapse mechanisms that are not typical of similar materials, leaving the collapse mechanisms and the resultant energy localization from collapse, i.e., hotspots, relatively uncharacterized. Therefore, we present pore collapse simulations of cylindrical pores in TATB for a wide range of pore sizes and shock strengths that trigger viscoplastic collapses that occur almost entirely perpendicular to the shock direction for weak shocks and hydrodynamic-like collapses for strong shocks that do not break the strong hydrogen bonds of the TATB basal planes. The resulting hotspot temperature fields from these mechanisms follow trends that differ considerably from other energetic materials; hence we compare them under normalized temperature values to assess the relative efficiency of each mechanism to localize energy. The local intra-molecular strain energy of the hotspots is also assessed to better understand the physical mechanisms behind the phenomena that leads to a latent potential energy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源