论文标题
分布应力 - 能量四极杆及其动力学的张力表示
The tensorial representation of the distributional stress-energy quadrupole and its dynamics
论文作者
论文摘要
我们研究了由三角洲功能在世界线上的协变量衍生的构建的压力能量张量。由于使用协变量衍生物,所有组件都会以张量为张。我们得出了组件的动力学方程,最多达四极顺序。但是,组件确实以非感知方式取决于沿着全球的矢量选择。我们还获得了有关一般多物的许多重要结果,包括它们的组件是唯一的,所有多尔都可以使用协变量衍生物编写。我们通过与该张量场的张量传输方式展示了多层的组件如何与张量场的标准矩相关。
We investigate stress-energy tensors constructed from the covariant derivatives of delta functions on a worldline. Since covariant derivatives are used all the components transform as tensors. We derive the dynamical equations for the components, up to quadrupole order. The components do, however, depend in a non-tensorial way, on a choice of a vector along the worldline. We also derive a number of important results about general multipoles, including that their components are unique, and all multipoles can be written using covariant derivatives. We show how the components of a multipole are related to standard moments of a tensor field, by parallelly transporting that tensor field.