论文标题
检查高级人工智能的差异风险和控制问题
Examining the Differential Risk from High-level Artificial Intelligence and the Question of Control
论文作者
论文摘要
人工智能(AI)是21世纪最具变革性的技术之一。未来AI功能的程度和范围仍然是关键的不确定性,并且对时间表和潜在影响的广泛分歧。随着国家和技术公司在人工智能系统中的更复杂性和自治方面的竞争,人们担心对不透明AI决策过程的整合和监督。在机器学习(ML)的子领域尤其如此,在该子场中,系统学会在没有人为援助的情况下优化目标。目标可以不完美地指定或以意外或潜在有害的方式执行。随着系统的增加和自主权的增加,这将变得更加令人担忧,在这种功能和自主权上,突然的能力跳跃可能会导致动力动态甚至灾难性失败的意外转移。这项研究提出了一个分层复杂的系统框架,以模拟AI风险,并为替代期货分析提供了模板。调查数据是从公共和私营部门的领域专家收集的,以对AI影响和可能性进行分类。结果表明,对强大的AI代理情景,对多种环境的信心以及对AI一致性失败和寻求影响的行为的关注增加了不确定性。
Artificial Intelligence (AI) is one of the most transformative technologies of the 21st century. The extent and scope of future AI capabilities remain a key uncertainty, with widespread disagreement on timelines and potential impacts. As nations and technology companies race toward greater complexity and autonomy in AI systems, there are concerns over the extent of integration and oversight of opaque AI decision processes. This is especially true in the subfield of machine learning (ML), where systems learn to optimize objectives without human assistance. Objectives can be imperfectly specified or executed in an unexpected or potentially harmful way. This becomes more concerning as systems increase in power and autonomy, where an abrupt capability jump could result in unexpected shifts in power dynamics or even catastrophic failures. This study presents a hierarchical complex systems framework to model AI risk and provide a template for alternative futures analysis. Survey data were collected from domain experts in the public and private sectors to classify AI impact and likelihood. The results show increased uncertainty over the powerful AI agent scenario, confidence in multiagent environments, and increased concern over AI alignment failures and influence-seeking behavior.