论文标题

迈向现实世界HDRTV重建:基于数据综合的方法

Towards Real World HDRTV Reconstruction: A Data Synthesis-based Approach

论文作者

Cheng, Zhen, Wang, Tao, Li, Yong, Song, Fenglong, Chen, Chang, Xiong, Zhiwei

论文摘要

现有的基于深度学习的HDRTV重建方法假设一种音调映射操作员(TMO)是合成SDRTV-HDRTV对以进行监督培训的降级程序。在本文中,我们认为,尽管传统的TMO利用有效的动态范围压缩先验,但它们在建模现实的退化方面有几个缺点:信息过度保护,颜色偏见和可能的伪像,使受过训练的重建网络难以广泛地普遍为现实情况。为了解决这个问题,我们提出了一种基于学习的数据综合方法,以通过将几个音调映射先验集成到网络结构和损失功能中,以了解现实世界SDRTV的属性。在具体而言,我们设计了一个有条件的两流网络,并具有先前的音调映射结果,作为通过全球和局部变换综合SDRTV的指导。为了训练数据综合网络,我们形成了一种新型的自我监督内容损失,以约束具有不同亮度分布的区域的合成SDRTV的不同方面,并且具有对抗性损失,以强调细节更现实。为了验证我们的方法的有效性,我们将SDRTV-HDRTV配对合成了我们的方法,并使用它们来训练多个HDRTV重建网络。然后,我们分别收集两个包含标记和未标记的现实世界SDRTV的推理数据集。实验结果表明,使用我们的合成数据训练的网络对这两个现实世界数据集的推广明显好于现有解决方案。

Existing deep learning based HDRTV reconstruction methods assume one kind of tone mapping operators (TMOs) as the degradation procedure to synthesize SDRTV-HDRTV pairs for supervised training. In this paper, we argue that, although traditional TMOs exploit efficient dynamic range compression priors, they have several drawbacks on modeling the realistic degradation: information over-preservation, color bias and possible artifacts, making the trained reconstruction networks hard to generalize well to real-world cases. To solve this problem, we propose a learning-based data synthesis approach to learn the properties of real-world SDRTVs by integrating several tone mapping priors into both network structures and loss functions. In specific, we design a conditioned two-stream network with prior tone mapping results as a guidance to synthesize SDRTVs by both global and local transformations. To train the data synthesis network, we form a novel self-supervised content loss to constraint different aspects of the synthesized SDRTVs at regions with different brightness distributions and an adversarial loss to emphasize the details to be more realistic. To validate the effectiveness of our approach, we synthesize SDRTV-HDRTV pairs with our method and use them to train several HDRTV reconstruction networks. Then we collect two inference datasets containing both labeled and unlabeled real-world SDRTVs, respectively. Experimental results demonstrate that, the networks trained with our synthesized data generalize significantly better to these two real-world datasets than existing solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源