论文标题

在破裂波中的气泡创建和声音产生过程的高保真模拟和新的数据分析

High-Fidelity Simulation and Novel Data Analysis of the Bubble Creation and Sound Generation Processes in Breaking Waves

论文作者

Gao, Qiang, Deane, Grant B., Basak, Saswata, Bitencourt, Umberto, Shen, Lian

论文摘要

计算能力的最新提高已使许多复杂的流动问题对海军应用具有实际且战略性的兴趣进行了数值模拟。一个明显的进步领域是,由波浪破裂和其他多相流动过程(例如空化过程)(可以产生水下声音和船只唤醒中的夹带气泡)等其他多相流动过程产生的湍流,两相流量的计算。尽管先进的流量求解器是复杂的,并且能够模拟大量网格点上的高雷诺数流,但仍然存在数据分析的挑战。具体而言,在离散时间步骤上对细网格上描述的高度分辨的流场进行了迫切需要,可以将流动动力学在海军应用中理解和利用。本文介绍了我们最近在这一领域的努力。在以前的作品中,我们开发了一种新型算法,以跟踪破坏波模拟的气泡并随着时间的流逝来解释其动力学行为(Gao等,2021a)。我们还发现了一种新的物理机制,驱动了波峰(Gao et al。,2021b)内的气泡产生,并开发了一个模型,将气泡行为与水下声音产生相关联(Gao等,2021c)。在这项工作中,我们将气泡跟踪算法应用于断裂波的模拟,并根据我们以前的作品研究了气泡轨迹,泡沫创造机制和气泡声学。

Recent increases in computing power have enabled the numerical simulation of many complex flow problems that are of practical and strategic interest for naval applications. A noticeable area of advancement is the computation of turbulent, two-phase flows resulting from wave breaking and other multiphase flow processes such as cavitation that can generate underwater sound and entrain bubbles in ship wakes, among other effects. Although advanced flow solvers are sophisticated and are capable of simulating high Reynolds number flows on large numbers of grid points, challenges in data analysis remain. Specifically, there is a critical need to transform highly resolved flow fields described on fine grids at discrete time steps into physically resolved features for which the flow dynamics can be understood and utilized in naval applications. This paper presents our recent efforts in this field. In previous works, we developed a novel algorithm to track bubbles in breaking wave simulations and to interpret their dynamical behavior over time (Gao et al., 2021a). We also discovered a new physical mechanism driving bubble production within breaking wave crests (Gao et al., 2021b) and developed a model to relate bubble behaviors to underwater sound generation (Gao et al., 2021c). In this work, we applied our bubble tracking algorithm to the breaking waves simulations and investigated the bubble trajectories, bubble creation mechanisms, and bubble acoustics based on our previous works.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源