论文标题
部分可观测时空混沌系统的无模型预测
linearized inverse problem for biharmonic operators at high frequencies
论文作者
论文摘要
在本文中,我们研究了Biharmonic方程的反边界值问题稳定性提高的现象。通过考虑线性化形式,当K较大时,我们获得了升高的Lipschitz样稳定性。此外,我们将讨论扩展到衰减的线性性逆二旋转电位问题,在稳定性估计中,衰减常数的指数依赖性呈指数依赖性。
In this paper, we study the phenomenon of increasing stability in the inverse boundary value problems for the biharmonic equation. By considering a linearized form, we obtain an increasing Lipschitz-like stability when k is large. Furthermore, we extend the discussion to the linearized inverse biharmonic potential problem with attenuation, where an exponential dependence of the attenuation constant is traced in the stability estimate.