论文标题
部分可观测时空混沌系统的无模型预测
Two stability theorems for $\mathcal{K}_{\ell + 1}^{r}$-saturated hypergraphs
论文作者
论文摘要
$ \ MATHCAL {F} $ - 饱和$ r $ -graph是最大$ r $ -graph,不包含$ \ Mathcal {f} $的任何成员作为子图。令$ \ Mathcal {k} _ {\ ell+1}^{r} $是所有$ r $ -graphs $ f $的集合,最多最多$ \ binom {\ ell+1} {2} {2} $ edges,以至于某些$ \ weft(\ ell+1 \ right)$是$ sep $ - $ f $的优势。我们的第一个结果表明,对于每个$ \ ell \ geq r \ geq 2 $每个$ \ mathcal {k} _ {\ ell+1}^{r}^{r} $ - 饱和的$ r $ -graph $ n $ dertices,带有$ t_ {r}(r}(r}(r}(n,ell)) - $(1-o(1))n $顶点的子图,它扩展了$ k _ {\ ell+1} $ - 由Popielarz,Sahasrabudhe和Snyder提供的稳定定理。我们还表明,界限是最好的。我们的第二个结果是由Andrásfai,Erdős和Sós的著名定理所激发的,该定理指出,$ \ ell \ geq 2 $每个$ k _ {\ ell+1} $ - 免费的图形$ g $ on $ n $ dertices on $ n $ dertices in $ n $ dertices,带有最低限度我们给出了它的HyperGraph版本。 The \emph{minimum positive co-degree} of an $r$-graph $\mathcal{H}$, denoted by $δ_{r-1}^{+}(\mathcal{H})$, is the maximum $k$ such that if $S$ is an $(r-1)$-set contained in a edge of $\mathcal{H}$, then $S$ is包含在至少$ k $中的$ \ MATHCAL {H} $的不同边缘。令$ \ ell \ ge 3 $为整数,$ \ MATHCAL {H} $为$ \ MATHCAL {k} _ {\ ell+1}^3 $ - 饱和$ 3 $ 3 $ - graph in $ n $ dertices。我们证明,如果$ \ ell \ ge 4 $和$δ_{2}^{+}(\ Mathcal {h})> \ frac {3 \ ell-7} {3 \ ell-1} {3 \ ell-1} n $;或$ \ ell = 3 $和$δ_{2}^{+}(\ Mathcal {h})> 2n/7 $,然后$ \ MATHCAL {H} $是$ \ ell $ -partite;而且界限是最好的。这是高图最小正共二级的第一个稳定性结果。
An $\mathcal{F}$-saturated $r$-graph is a maximal $r$-graph not containing any member of $\mathcal{F}$ as a subgraph. Let $\mathcal{K}_{\ell + 1}^{r}$ be the collection of all $r$-graphs $F$ with at most $\binom{\ell+1}{2}$ edges such that for some $\left(\ell+1\right)$-set $S$ every pair $\{u, v\} \subset S$ is covered by an edge in $F$. Our first result shows that for each $\ell \geq r \geq 2$ every $\mathcal{K}_{\ell+1}^{r}$-saturated $r$-graph on $n$ vertices with $t_{r}(n, \ell) - o(n^{r-1+1/\ell})$ edges contains a complete $\ell$-partite subgraph on $(1-o(1))n$ vertices, which extends a stability theorem for $K_{\ell+1}$-saturated graphs given by Popielarz, Sahasrabudhe and Snyder. We also show that the bound is best possible. Our second result is motivated by a celebrated theorem of Andrásfai, Erdős and Sós which states that for $\ell \geq 2$ every $K_{\ell+1}$-free graph $G$ on $n$ vertices with minimum degree $δ(G) > \frac{3\ell-4}{3\ell-1}n$ is $\ell$-partite. We give a hypergraph version of it. The \emph{minimum positive co-degree} of an $r$-graph $\mathcal{H}$, denoted by $δ_{r-1}^{+}(\mathcal{H})$, is the maximum $k$ such that if $S$ is an $(r-1)$-set contained in a edge of $\mathcal{H}$, then $S$ is contained in at least $k$ distinct edges of $\mathcal{H}$. Let $\ell\ge 3$ be an integer and $\mathcal{H}$ be a $\mathcal{K}_{\ell+1}^3$-saturated $3$-graph on $n$ vertices. We prove that if either $\ell \ge 4$ and $δ_{2}^{+}(\mathcal{H}) > \frac{3\ell-7}{3\ell-1}n$; or $\ell = 3$ and $δ_{2}^{+}(\mathcal{H}) > 2n/7$, then $\mathcal{H}$ is $\ell$-partite; and the bound is best possible. This is the first stability result on minimum positive co-degree for hypergraphs.