论文标题

利用基于GAN的ECG合成中的统计形状先验

Leveraging Statistical Shape Priors in GAN-based ECG Synthesis

论文作者

Neifar, Nour, Ben-Hamadou, Achraf, Mdhaffar, Afef, Jmaiel, Mohamed, Freisleben, Bernd

论文摘要

紧急情况下的心电图(ECG)数据收集具有挑战性,使ECG数据生成成为处理高度不平衡的ECG培训数据集的有效解决方案。在本文中,我们提出了一种使用生成对抗网络(GAN)和统计ECG数据建模的新型ECG信号生成方法。我们的方法利用有关ECG动力学的先验知识来综合现实信号,以解决ECG信号的复杂动态。为了验证我们的方法,我们使用MIT-BIH心律失常数据库中的ECG信号进行了实验。我们的结果表明,我们的方法将ECG信号的时间和振幅变化模拟为2-D形状,与最新的基于GAN的生成基线相比会产生更逼真的信号。我们提出的方法对提高ECG培训数据集的质量具有重要意义,这最终可以提高ECG分类算法的性能。这项研究有助于开发更有效,更准确的心电图分析方法,这可以有助于诊断和治疗心脏病。

Electrocardiogram (ECG) data collection during emergency situations is challenging, making ECG data generation an efficient solution for dealing with highly imbalanced ECG training datasets. In this paper, we propose a novel approach for ECG signal generation using Generative Adversarial Networks (GANs) and statistical ECG data modeling. Our approach leverages prior knowledge about ECG dynamics to synthesize realistic signals, addressing the complex dynamics of ECG signals. To validate our approach, we conducted experiments using ECG signals from the MIT-BIH arrhythmia database. Our results demonstrate that our approach, which models temporal and amplitude variations of ECG signals as 2-D shapes, generates more realistic signals compared to state-of-the-art GAN based generation baselines. Our proposed approach has significant implications for improving the quality of ECG training datasets, which can ultimately lead to better performance of ECG classification algorithms. This research contributes to the development of more efficient and accurate methods for ECG analysis, which can aid in the diagnosis and treatment of cardiac diseases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源