论文标题
(1+1)的溶液 - 二维DIRAC方程与特殊的正交多项式和参数对称性相关
Solutions of (1+1)-dimensional Dirac equation associated with exceptional orthogonal polynomials and the parametric symmetry
论文作者
论文摘要
我们考虑$ 1+1 $维零作为具有合理扩展的标量电势,对应于径向振荡器,三角围巾和双曲线poschl-teller电位,并根据特殊的正交多项式来获得其解决方案。此外,如果是三角围巾和双曲线poschl teller病例,则使用参数对称性的概念产生了新的狄拉克标量势家族,其解决方案是根据常规和特殊的正交多项式来获得的。
We consider $1+1$-dimensional Dirac equation with rationally extended scalar potentials corresponding to the radial oscillator, the trigonometric Scarf and the hyperbolic Poschl-Teller potentials and obtain their solution in terms of exceptional orthogonal polynomials. Further, in the case of the trigonometric Scarf and the hyperbolic Poschl-Teller cases, new family of Dirac scalar potentials are generated using the idea of parametric symmetry and their solutions are obtained in terms of conventional as well as exceptional orthogonal polynomials.