论文标题
关于Skolem的鲁棒性,积极性和最终阳性问题
On Robustness for the Skolem, Positivity and Ultimate Positivity Problems
论文作者
论文摘要
Skolem问题是线性动力学系统中的长期开放问题:线性复发序列(LRS)可以从给定的初始配置中达到0吗?同样,阳性问题询问LRS是否从初始配置中保持阳性。确定Skolem(或积极性)已经开放了半个世纪:最著名的可判性结果是针对具有特殊特性的LR(例如,低阶复发)。但是对于“非初始化”的变体来说,这些问题更容易,其中初始配置不是固定的,但可以随意变化:检查是否存在初始配置,可以在多项式时间内确定LRS保持阳性的阳性(2004年的Tiwari,2006年的Braverman,2006年)。在本文中,我们考虑了初始化和非初始化变体之间存在的问题。更确切地说,我们询问是否可以从给定初始配置的附近的每个初始配置中避免0(分别为负数)。这可以被认为是Skolem(分别阳性)问题的强大变体。我们表明,这些问题位于可定性的边界:如果作为输入的一部分给出了邻域,那么强大的skolem和稳健的阳性是硬养生的坚硬,即解决的要么会带来肉毒po的近似突破,就像(非bubust)阳性一样。但是,如果有人问是否存在这样的邻居,那么问题的问题是可以决定的。我们的技术还使我们能够解决鲁棒性以达到最终的积极性,这询问LRS之后是否存在构成数量。有两个变体,具体取决于我们是否要求在此数量的步骤上绑定“统一”。对于不均匀的变体,当邻居打开时,即使将邻居作为输入给出,问题也是可以解决的。
The Skolem problem is a long-standing open problem in linear dynamical systems: can a linear recurrence sequence (LRS) ever reach 0 from a given initial configuration? Similarly, the positivity problem asks whether the LRS stays positive from an initial configuration. Deciding Skolem (or positivity) has been open for half a century: the best known decidability results are for LRS with special properties (e.g., low order recurrences). But these problems are easier for "uninitialized" variants, where the initial configuration is not fixed but can vary arbitrarily: checking if there is an initial configuration from which the LRS stays positive can be decided in polynomial time (Tiwari in 2004, Braverman in 2006). In this paper, we consider problems that lie between the initialized and uninitialized variants. More precisely, we ask if 0 (resp. negative numbers) can be avoided from every initial configuration in a neighborhood of a given initial configuration. This can be considered as a robust variant of the Skolem (resp. positivity) problem. We show that these problems lie at the frontier of decidability: if the neighbourhood is given as part of the input, then robust Skolem and robust positivity are Diophantine hard, i.e., solving either would entail major breakthroughs in Diophantine approximations, as happens for (non-robust) positivity. However, if one asks whether such a neighbourhood exists, then the problems turn out to be decidable with PSPACE complexity. Our techniques also allow us to tackle robustness for ultimate positivity, which asks whether there is a bound on the number of steps after which the LRS remains positive. There are two variants depending on whether we ask for a "uniform" bound on this number of steps. For the non-uniform variant, when the neighbourhood is open, the problem turns out to be tractable, even when the neighbourhood is given as input.