论文标题

通过云数据中心网络加载余额计划的动态资源分配方法

Dynamic Resource Allocation Method for Load Balance Scheduling over Cloud Data Center Networks

论文作者

Chhabra, Sakshi, Singh, Ashutosh Kumar

论文摘要

云数据中心有许多主机以及资源动态的应用程序请求。对资源分配的需求是多种多样的。这些因素可能导致负载失衡,这会影响调度效率和资源利用率。提出了一种称为负载平衡动态资源分配(DRALB)的调度方法。提出的解决方案构成了两个步骤:首先,Load Manager分析了CPU,内存,能量和带宽的用法等资源要求,并为每个应用程序分配了适当数量的VM。其次,收集和更新资源信息,其中资源根据资源的负载(即CPU密集,内存密集,能量密集型和带宽密集型)排序四个队列。我们将SLA感知的调度不仅限制在资源可用性,改善吞吐量,响应时间等,还可以最大程度地利用资源利用和SLA(服务水平协议)违规罚款来最大化云利润。此方法基于客户应用程序的多样性并搜索特定部署的最佳资源。根据以下参数,即平均响应时间进行实验;资源利用,违反SLA的率和负载平衡。实验结果表明,该方法可以减少资源的浪费,并将流量减少到网络中的44.89和58.49。

The cloud datacenter has numerous hosts as well as application requests where resources are dynamic. The demands placed on the resource allocation are diverse. These factors could lead to load imbalances, which affect scheduling efficiency and resource utilization. A scheduling method called Dynamic Resource Allocation for Load Balancing (DRALB) is proposed. The proposed solution constitutes two steps: First, the load manager analyzes the resource requirements such as CPU, Memory, Energy and Bandwidth usage and allocates an appropriate number of VMs for each application. Second, the resource information is collected and updated where resources are sorted into four queues according to the loads of resources i.e. CPU intensive, Memory intensive, Energy intensive and Bandwidth intensive. We demonstarate that SLA-aware scheduling not only facilitates the cloud consumers by resources availability and improves throughput, response time etc. but also maximizes the cloud profits with less resource utilization and SLA (Service Level Agreement) violation penalties. This method is based on diversity of clients applications and searching the optimal resources for the particular deployment. Experiments were carried out based on following parameters i.e. average response time; resource utilization, SLA violation rate and load balancing. The experimental results demonstrate that this method can reduce the wastage of resources and reduces the traffic upto 44.89 and 58.49 in the network.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源