论文标题
ISA-NET:改善PET-CT肿瘤分割的空间注意网络
ISA-Net: Improved spatial attention network for PET-CT tumor segmentation
论文作者
论文摘要
实现准确和自动化的肿瘤分割在临床实践和放射线学研究中都起着重要作用。现在,专家经常手动执行医学细分,这是一项费力,昂贵且容易出错的任务。手动注释在很大程度上取决于这些专家的经验和知识。另外,观察者内和观察者间的变化很多。因此,开发一种可以自动分割肿瘤靶区域的方法具有重要意义。在本文中,我们提出了一种基于多模式正电子发射断层扫描(PET-CT)的深度学习分割方法,该方法结合了PET的高灵敏度和CT的精确解剖信息。我们设计了改进的空间注意网络(ISA-NET),以提高PET或CT在检测肿瘤中的准确性,该肿瘤使用多尺度卷积操作来提取特征信息,并可以突出显示肿瘤区域位置信息并抑制非肿瘤区域位置信息。此外,我们的网络在编码阶段使用双通道输入,并将它们融合在解码阶段,这可以利用PET和CT之间的差异和互补性。我们在两个临床数据集上验证了拟议的ISA-NET方法,一个软组织肉瘤(STS)和头颈肿瘤(Hecktor)数据集,并与其他肿瘤分割的注意方法进行了比较。 STS数据集上的DSC分数为0.8378,Hecktor数据集上的DSC分数显示为0.8076,显示ISA-NET方法可实现更好的分割性能,并且具有更好的概括。结论:本文提出的方法基于多模式医学图像肿瘤分割,该方法可以有效地利用不同模式的差异和互补性。该方法还可以通过适当的调整应用于其他多模式数据或单模式数据。
Achieving accurate and automated tumor segmentation plays an important role in both clinical practice and radiomics research. Segmentation in medicine is now often performed manually by experts, which is a laborious, expensive and error-prone task. Manual annotation relies heavily on the experience and knowledge of these experts. In addition, there is much intra- and interobserver variation. Therefore, it is of great significance to develop a method that can automatically segment tumor target regions. In this paper, we propose a deep learning segmentation method based on multimodal positron emission tomography-computed tomography (PET-CT), which combines the high sensitivity of PET and the precise anatomical information of CT. We design an improved spatial attention network(ISA-Net) to increase the accuracy of PET or CT in detecting tumors, which uses multi-scale convolution operation to extract feature information and can highlight the tumor region location information and suppress the non-tumor region location information. In addition, our network uses dual-channel inputs in the coding stage and fuses them in the decoding stage, which can take advantage of the differences and complementarities between PET and CT. We validated the proposed ISA-Net method on two clinical datasets, a soft tissue sarcoma(STS) and a head and neck tumor(HECKTOR) dataset, and compared with other attention methods for tumor segmentation. The DSC score of 0.8378 on STS dataset and 0.8076 on HECKTOR dataset show that ISA-Net method achieves better segmentation performance and has better generalization. Conclusions: The method proposed in this paper is based on multi-modal medical image tumor segmentation, which can effectively utilize the difference and complementarity of different modes. The method can also be applied to other multi-modal data or single-modal data by proper adjustment.