论文标题
审查Gamow-Teller和Fermi过渡强度功能
Review of Gamow-Teller and Fermi Transition Strength Functions
论文作者
论文摘要
我们研究了Gamow-Teller激发中的等音 - 单词配对中的温度效应。我们在平均场壳模型中使用孔粒子的理论研究了$β$ - 奇数同位素的$β$ decay和$β$ - 均匀和/或奇数 - 奇数的$β$ -DECED的两粒子孔模型。我们的单粒子 - 孔模型的参考同位素是\ ce {^{15} o},\ ce {^{15} n},\ ce {^17} f},\ ce {^ce {^{41} sc} $β^ - $ - 衰减)和\ ce {^{56} ni}和\ ce {^{40} sc}(对于$β^+$/ec)。 计算涉及评估Gamow-Teller和费米转变的矩阵元素,然后计算Gamow-Teller和Fermi的过渡概率降低,我们从中评估了半衰期和强度函数$ ft $。将结果与可用的实验数据进行了比较。对于一个粒子一个孔模型,我们发现与实验值有一个偏差,表明该模型由于残留的核子核子相互作用而在基态处于基态的β衰减无效。至于两个粒子孔模型,我们计算了过渡幅度,从中,我们从中计算了过渡$ \ log ft $值的强度。我们发现实验结果和理论结果之间有一个很好的一致性。 通过绘制温度与$ \ log ft $值之间的关系,我们发现一般趋势是,随着温度的增加,强度函数值逐渐下降。由于$ \ log ft $在价核的外壳配置上的强烈依赖,因此存在波动$ \ log ft $。
We studied the temperature effect in isospin-singlet pairings in Gamow-Teller excitations. We use theories of a hole-particle in the mean field shell model studied decay transition using the one-particle-one-hole model for the $β$-decay of odd-even isotopes and the two-particle-hole models for the $β$-decay of even-even and/or odd-odd isotopes. Our reference isotopes for the one-particle-one-hole model are \ce{^{15}O}, \ce{^{15}N}, \ce{^{17}F}, and \ce{^{41}Sc}, whereas for the two-particle-hole model we use \ce{^{16}N} (for $β^-$-decay) and \ce{^{56}Ni} and \ce{^{40}Sc} (for $β^+$/EC). The calculations involve evaluating the matrix elements of Gamow -Teller and Fermi transitions, then calculate the reduced transition probabilities of Gamow-Teller and Fermi, from which we evaluate the half-lives and the strength function $ft$. The results are compared with the available experimental data. For one-particle-one-hole model we found there is a deviation from experimental values which indicates that the model is not valid for beta decay for the even-even nuclei in the ground state due to the residual nucleon-nucleon interaction. As for a two-particle-hole model, we calculated the transition amplitude, from which we calculated the strength of the transition $\log ft$ values. We found an excellent agreement between experimental and theoretical results. By drawing the relationship between temperature versus $\log ft$ values, we found the general trend is that the strength function values slowly decrease as temperatures increases. There are fluctuations $\log ft$ due to the strongly dependent of $\log ft$ on the shell configuration of the valence nucleons.