论文标题
部分可观测时空混沌系统的无模型预测
Dynamical fermionization in one-dimensional spinor gases at finite temperature
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Following the removal of axial confinement, the momentum distribution of a Tonks-Girardeau gas approaches that of a system of noninteracting spinless fermions in the initial harmonic trap. This phenomenon, called dynamical fermionization, has been experimentally confirmed in the case of the Lieb-Liniger model and theoretically predicted in the case of multicomponent systems at zero temperature. We prove analytically that for all spinor gases with strong repulsive contact interactions at finite temperature the momentum distribution after release from the trap asymptotically approaches that of a system of spinless fermions at the same temperature but with a renormalized chemical potential which depends on the number of components of the spinor system. In the case of the Gaudin-Yang model we check numerically our analytical predictions using the results obtained from a nonequilibrium generalization of Lenard's formula describing the time evolution of the field-field correlators.