论文标题

改进了基于分数的生成建模的分析:在最小平滑度假设下的用户友好界限

Improved Analysis of Score-based Generative Modeling: User-Friendly Bounds under Minimal Smoothness Assumptions

论文作者

Chen, Hongrui, Lee, Holden, Lu, Jianfeng

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We give an improved theoretical analysis of score-based generative modeling. Under a score estimate with small $L^2$ error (averaged across timesteps), we provide efficient convergence guarantees for any data distribution with second-order moment, by either employing early stopping or assuming smoothness condition on the score function of the data distribution. Our result does not rely on any log-concavity or functional inequality assumption and has a logarithmic dependence on the smoothness. In particular, we show that under only a finite second moment condition, approximating the following in reverse KL divergence in $ε$-accuracy can be done in $\tilde O\left(\frac{d \log (1/δ)}ε\right)$ steps: 1) the variance-$δ$ Gaussian perturbation of any data distribution; 2) data distributions with $1/δ$-smooth score functions. Our analysis also provides a quantitative comparison between different discrete approximations and may guide the choice of discretization points in practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源