论文标题
部分可观测时空混沌系统的无模型预测
Photospheric Imprints of Coronal Electric Currents, I. Magnetic Structure Near Polarity Inversion Lines
论文作者
论文摘要
冠状电流存储在太阳耀斑和冠状质量弹出(CME)中释放的磁能。在这里,我们使用光球矢量磁场观测来研究活性区域10930和11158的电流,这些电流都产生了喷发性的X级耀斑。我们在笛卡尔几何形状中采用高斯的分离方法将光谱字段划分为三个不同的组成部分:(i)从垂直电流,$ j_z $,通过Photerphere,$ \ vec b_t $,$ \ vec b_t $; (ii)$ \ vec b^<$,来自水平电流,$ \ vec j_h^<$,流在其下方; (iii)$ \ vec b^> $,从水平电流,$ \ vec j_h^> $,流到其上方。我们将$ \ vec b^> $称为冠状电流的光泽烙印。我们给出了$ \ vec b^<$和$ \ vec b^> $的两种表示形式:(i)分别为Poloidal电位的二阶导数$ p^<$和$ p^> $; (ii)分别在内部和外部标量势的梯度方面。每个区域中的中央极性反转线(PIL)具有与Schuck等人在AR 12673中报道的相似的磁性结构。 (2022):(i)$ \ vec b_t $,它来自$ j_z $,在pil沿着PIL产生剪切的田地; (ii)$ \ vec b^> $表现出大规模,空间连贯的结构,与$ \ vec j_h^> $一致,$ \ vec j_h^> $在PIL上方和沿PIL上流动; (iii)近乎细胞电流$ \ vec j_h^<$和$ \ vec j_h^> $大致平行。由于平行电流吸引,因此这种并行电流配置可能比未对准的配置更稳定。当前的$ \ vec j_h^> $沿着PIL沿PIL的梯度增加了$ b_z $的梯度,为先前报道的先前报道的强,交叉坡度的$ b_z $中的经验性关联提供了物理解释。
Coronal electric currents store the magnetic energy that is released in solar flares and coronal mass ejections (CMEs). Here, we use photospheric vector magnetic field observations to study currents in active regions 10930 and 11158, which both produced eruptive, X-class flares. We employ Gauss's separation method in Cartesian geometry to partition the photospheric field into three distinct components: (i) the toroidal field, $\vec B_T$, from vertical currents, $J_z$, passing through the photosphere; (ii) $\vec B^<$, from horizontal currents, $\vec J_h^<$, flowing below it; and (iii) $\vec B^>$, from horizontal currents, $\vec J_h^>$, flowing above it. We refer to $\vec B^>$ as the photospheric imprint of coronal currents. We give two representations of $\vec B^<$ and $\vec B^>$: (i) as second-order derivatives of poloidal potentials $P^<$ and $P^>$, respectively; and (ii) in terms of gradients of interior and exterior scalar potentials, respectively. The central polarity inversion line (PIL) in each region possesses magnetic structure similar to that reported in AR 12673 by Schuck et al. (2022): (i) $\vec B_T$, which arises from $J_z$, produces sheared fields along the PIL; (ii) $\vec B^>$ exhibits large-scale, spatially coherent structure, consistent with $\vec J_h^>$ flowing above and along the PIL; and (iii) the near-PIL currents $\vec J_h^<$ and $\vec J_h^>$ are roughly parallel. Because parallel currents attract, such parallel-current configurations are likely more stable than misaligned-current configurations. Current $\vec J_h^>$ flowing along a PIL increases the magnitued of the gradient of $B_z$ across the PIL, providing a physical explanation for previously reported empirical associations of strong, cross-PIL gradients in $B_z$ with flare and CME occurrence.