论文标题

玻璃二进制混合物中局部结构的尺寸降低

Dimensionality reduction of local structure in glassy binary mixtures

论文作者

Coslovich, Daniele, Jack, Robert L., Paret, Joris

论文摘要

我们考虑使用无监督的学习方法来表征超冷液体和玻璃的无序显微镜结构。具体而言,我们执行了描述径向和键取向相关性的平滑结构描述符的尺寸降低,并评估该方法掌握玻璃二进制混合物的基本结构特征的能力。在某些情况下,一些集体变量解释了第一个配位壳内的大部分结构波动,并且与粒子迁移率的波动显示了明显的联系。表征键取向顺序的径向依赖性的细粒描述符可以更好地捕获与粒子迁移率相关的结构波动,但也更难参数化和解释。我们还发现,债券取向顺序参数的主成分分析为神经网络自动编码器提供了相同的结果,同时具有易于解释的优势。总体而言,我们的结果表明玻璃二元混合物具有广泛的结构特征。在我们研究的温度范围内,一些混合物显示出明确定义的本地结构,这些结构反映在通过降低维度降低的结构变量的双峰分布中。

We consider unsupervised learning methods for characterizing the disordered microscopic structure of supercooled liquids and glasses. Specifically, we perform dimensionality reduction of smooth structural descriptors that describe radial and bond-orientational correlations, and assess the ability of the method to grasp the essential structural features of glassy binary mixtures. In several cases, a few collective variables account for the bulk of the structural fluctuations within the first coordination shell and also display a clear connection with the fluctuations of particle mobility. Fine-grained descriptors that characterize the radial dependence of bond-orientational order better capture the structural fluctuations relevant for particle mobility, but are also more difficult to parametrize and to interpret. We also find that principal component analysis of bond-orientational order parameters provides identical results to neural network autoencoders, while having the advantage of being easily interpretable. Overall, our results indicate that glassy binary mixtures have a broad spectrum of structural features. In the temperature range we investigate, some mixtures display well-defined locally favored structures, which are reflected in bimodal distributions of the structural variables identified by dimensionality reduction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源