论文标题

通过跨注意的立场检测的上下文信息集成

Contextual information integration for stance detection via cross-attention

论文作者

Beck, Tilman, Waldis, Andreas, Gurevych, Iryna

论文摘要

立场检测涉及确定作者对目标的立场。大多数现有的立场检测模型受到限制,因为它们不考虑相关的上下文信息,该信息允许正确推断立场。可以在知识库中找到互补的上下文,但是由于标准知识库的图形结构,将上下文集成到预验证的语言模型中。为了克服这一点,我们探讨了一种将上下文信息整合为文本的方法,该方法允许从异构源(例如结构化知识源)和提示大型语言模型中整合上下文信息。我们的方法可以在跨目标设置中的大型且多样化的立场检测基准上胜过竞争性基线,即在训练过程中看不见的目标。我们证明,它对嘈杂的环境更强大,并且可以正规化标签和特定目标词汇之间的不良相关性。最后,它独立于使用的语言模型。

Stance detection deals with identifying an author's stance towards a target. Most existing stance detection models are limited because they do not consider relevant contextual information which allows for inferring the stance correctly. Complementary context can be found in knowledge bases but integrating the context into pretrained language models is non-trivial due to the graph structure of standard knowledge bases. To overcome this, we explore an approach to integrate contextual information as text which allows for integrating contextual information from heterogeneous sources, such as structured knowledge sources and by prompting large language models. Our approach can outperform competitive baselines on a large and diverse stance detection benchmark in a cross-target setup, i.e. for targets unseen during training. We demonstrate that it is more robust to noisy context and can regularize for unwanted correlations between labels and target-specific vocabulary. Finally, it is independent of the pretrained language model in use.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源