论文标题
高光谱图像中的快速噪声通过代表系数的总变化
Fast Noise Removal in Hyperspectral Images via Representative Coefficient Total Variation
论文作者
论文摘要
数据中的挖掘结构先验是高光谱图像(HSI)降级任务的广泛认可的技术,其典型方法包括基于模型的方法和基于数据的方法。基于模型的方法具有良好的概括能力,而由于HSI数据$ \ Mathbf {X} \ in \ Mathbb {r}^{Mn \ times b} $,运行时无法满足实际情况的快速处理要求。对于基于数据的方法,一旦培训了新的测试数据,它们在新的测试数据上的性能非常快。但是,它们的概括能力始终不足。在本文中,我们提出了一种基于快速模型的HSI DeNoising方法。具体而言,我们提出了一个新颖的常规化器,称为代表系数总变异(RCTV),以同时表征低级和局部平滑特性。提出的RCTV正则化剂是基于这样的观察结果,即代表系数矩阵$ \ mathbf {u} \ in \ Mathbb {r}^{Mn \ times r}(r \ ll b)$由正交转换为原始的hsi $ \ \ m iath loct y mathbf { $ \ mathbf {x} $。由于$ r/b $很小,因此基于RCTV正规器的HSI DeNoising模型具有较低的时间复杂性。此外,我们发现代表系数矩阵$ \ mathbf {u} $对噪声是可靠的,因此RCTV正常器可以在某种程度上促进HSI DeNoising模型的鲁棒性。与其他最先进的方法相比,有关混合噪声的广泛实验表明,在降解性能和去索速度方面提出的方法的优越性。值得注意的是,我们所提出的方法的转换速度优于所有基于模型的技术,并且与基于深度学习的方法相媲美。
Mining structural priors in data is a widely recognized technique for hyperspectral image (HSI) denoising tasks, whose typical ways include model-based methods and data-based methods. The model-based methods have good generalization ability, while the runtime cannot meet the fast processing requirements of the practical situations due to the large size of an HSI data $ \mathbf{X} \in \mathbb{R}^{MN\times B}$. For the data-based methods, they perform very fast on new test data once they have been trained. However, their generalization ability is always insufficient. In this paper, we propose a fast model-based HSI denoising approach. Specifically, we propose a novel regularizer named Representative Coefficient Total Variation (RCTV) to simultaneously characterize the low rank and local smooth properties. The RCTV regularizer is proposed based on the observation that the representative coefficient matrix $\mathbf{U}\in\mathbb{R}^{MN\times R} (R\ll B)$ obtained by orthogonally transforming the original HSI $\mathbf{X}$ can inherit the strong local-smooth prior of $\mathbf{X}$. Since $R/B$ is very small, the HSI denoising model based on the RCTV regularizer has lower time complexity. Additionally, we find that the representative coefficient matrix $\mathbf{U}$ is robust to noise, and thus the RCTV regularizer can somewhat promote the robustness of the HSI denoising model. Extensive experiments on mixed noise removal demonstrate the superiority of the proposed method both in denoising performance and denoising speed compared with other state-of-the-art methods. Remarkably, the denoising speed of our proposed method outperforms all the model-based techniques and is comparable with the deep learning-based approaches.