论文标题

巴特:带基于转换的触发器的后门攻击

BATT: Backdoor Attack with Transformation-based Triggers

论文作者

Xu, Tong, Li, Yiming, Jiang, Yong, Xia, Shu-Tao

论文摘要

深度神经网络(DNN)容易受到后门攻击的影响。后门对手打算通过注射隐藏的后门来恶意控制攻击DNN的预测,这些后门可以在训练过程中被对手指定的触发模式激活。最近的一项研究表明,大多数现有攻击在真实的物理世界中都失败了,因为数字化测试样本中包含的触发因素可能与用于培训的测试样本不同。因此,用户可以采用空间转换作为预处理图像以停用隐藏的后门。在本文中,我们从另一方面探讨了先前的发现。我们利用特定参数作为触发图案来设计经典的空间变换(即旋转和翻译),以设计简单但有效的基于中毒的后门攻击。例如,只有旋转到特定角度的图像才能激活攻击的DNN的嵌入式后门。进行了广泛的实验,以验证我们在数字和物理环境下攻击的有效性及其对现有后门防御的抵抗力。

Deep neural networks (DNNs) are vulnerable to backdoor attacks. The backdoor adversaries intend to maliciously control the predictions of attacked DNNs by injecting hidden backdoors that can be activated by adversary-specified trigger patterns during the training process. One recent research revealed that most of the existing attacks failed in the real physical world since the trigger contained in the digitized test samples may be different from that of the one used for training. Accordingly, users can adopt spatial transformations as the image pre-processing to deactivate hidden backdoors. In this paper, we explore the previous findings from another side. We exploit classical spatial transformations (i.e. rotation and translation) with the specific parameter as trigger patterns to design a simple yet effective poisoning-based backdoor attack. For example, only images rotated to a particular angle can activate the embedded backdoor of attacked DNNs. Extensive experiments are conducted, verifying the effectiveness of our attack under both digital and physical settings and its resistance to existing backdoor defenses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源