论文标题
在培训中利用虚拟图像的逐步转换学习
Progressive Transformation Learning for Leveraging Virtual Images in Training
论文作者
论文摘要
为了有效询问基于无人机的图像来检测感兴趣的对象(例如人类),必须获取基于无人机的大规模数据集,其中包括包括从广泛不同的视角捕获的各种姿势的人类实例。作为艰苦且昂贵的数据策划的可行替代方法,我们引入了渐进转型学习(PTL),该学习通过添加具有增强现实主义的转换虚拟图像来逐渐增强培训数据集。通常,当真实图像和虚拟图像之间存在较大的域间隙时,有条件的GAN框架中的虚拟2Real变换发生器会遭受质量降解。为了应对域间隙,PTL采用了一种新颖的方法,该方法逐渐迭代以下三个步骤:1)根据域间隙从虚拟图像池中选择一个子集,2)2)2)将所选虚拟图像转换为增强现实主义,3)将转换的虚拟图像添加到训练集中,同时将其从池中删除。在PTL中,准确量化域间隙至关重要。为此,我们从理论上证明了给定对象检测器的特征表示空间可以建模为多元高斯分布,从该分布中,虚拟对象之间的Mahalanobis距离与表示空间中每个对象类别的高斯分布之间的Mahalanobis距离很容易计算。实验表明,PTL导致基线的性能大幅增长,尤其是在小数据和跨域状态中。
To effectively interrogate UAV-based images for detecting objects of interest, such as humans, it is essential to acquire large-scale UAV-based datasets that include human instances with various poses captured from widely varying viewing angles. As a viable alternative to laborious and costly data curation, we introduce Progressive Transformation Learning (PTL), which gradually augments a training dataset by adding transformed virtual images with enhanced realism. Generally, a virtual2real transformation generator in the conditional GAN framework suffers from quality degradation when a large domain gap exists between real and virtual images. To deal with the domain gap, PTL takes a novel approach that progressively iterates the following three steps: 1) select a subset from a pool of virtual images according to the domain gap, 2) transform the selected virtual images to enhance realism, and 3) add the transformed virtual images to the training set while removing them from the pool. In PTL, accurately quantifying the domain gap is critical. To do that, we theoretically demonstrate that the feature representation space of a given object detector can be modeled as a multivariate Gaussian distribution from which the Mahalanobis distance between a virtual object and the Gaussian distribution of each object category in the representation space can be readily computed. Experiments show that PTL results in a substantial performance increase over the baseline, especially in the small data and the cross-domain regime.