论文标题
图形有限空间上的各向同性高斯过程
Isotropic Gaussian Processes on Finite Spaces of Graphs
论文作者
论文摘要
我们提出了一种在各种未加权图的集合上定义高斯过程先验的原则方法:指向或无向导,有或没有循环。我们通过将它们变成适当的群体的顶点集来赋予这些集合中的每个集合,从而诱发亲密和对称性的概念。在此基础上,我们描述了尊重这种结构的先验类别,并且类似于欧几里得各向同性过程,例如平方指数或matérn。我们提出了一种有效的计算技术,用于评估这些先验的内核的表面上棘手的问题,使这种高斯流程在通常的工具箱和下游应用程序中可用。我们将进一步考虑未加权图的等效类别的集合,并定义其适当版本的先验版本。我们证明了硬度结果,表明在这种情况下,确切的内核计算无法有效执行。但是,我们提出了一个简单的蒙特卡洛近似,用于处理中等大小的情况。受到化学应用的启发,我们说明了小型数据制度中实际分子财产预测任务的提议技术。
We propose a principled way to define Gaussian process priors on various sets of unweighted graphs: directed or undirected, with or without loops. We endow each of these sets with a geometric structure, inducing the notions of closeness and symmetries, by turning them into a vertex set of an appropriate metagraph. Building on this, we describe the class of priors that respect this structure and are analogous to the Euclidean isotropic processes, like squared exponential or Matérn. We propose an efficient computational technique for the ostensibly intractable problem of evaluating these priors' kernels, making such Gaussian processes usable within the usual toolboxes and downstream applications. We go further to consider sets of equivalence classes of unweighted graphs and define the appropriate versions of priors thereon. We prove a hardness result, showing that in this case, exact kernel computation cannot be performed efficiently. However, we propose a simple Monte Carlo approximation for handling moderately sized cases. Inspired by applications in chemistry, we illustrate the proposed techniques on a real molecular property prediction task in the small data regime.