论文标题
在具有不同类型的量子资源的非合作游戏中改善社会福利
Improving social welfare in non-cooperative games with different types of quantum resources
论文作者
论文摘要
我们通过研究不同类型的量子资源如何导致新的NASH平衡并改善社会福利 - 衡量平衡质量的质量,从而在多部分非合作游戏中获得了哪些量子优势。分析了两种不同的量子设置:第一个,在该设置中,玩家可以直接访问纠缠量子状态,而我们在此处介绍的第二个只能从量子设备获得经典建议。对于给定的游戏$ g $,这两个设置产生了不同的平衡,其特征在于$ q_ \ textrm {corr}(g)$和$ q(g)$的集合。我们表明$ q(g)\ subseteq q_ \ textrm {corr}(g)$,并且通过利用某些相关性的自测属性,该包含对于某些游戏$ g $严格。我们利用SDP优化技术来研究这些量子资源如何改善社会福利,在每种环境中都能达到的社会福利上的上限和下限。我们研究了几种涉及利益冲突的游戏,社会福利如何依赖游戏的偏见,并改善了以前使用伪病态解决方案获得的分离。
We investigate what quantum advantages can be obtained in multipartite non-cooperative games by studying how different types of quantum resources can lead to new Nash equilibria and improve social welfare -- a measure of the quality of an equilibrium. Two different quantum settings are analysed: a first, in which players are given direct access to an entangled quantum state, and a second, which we introduce here, in which they are only given classical advice obtained from quantum devices. For a given game $G$, these two settings give rise to different equilibria characterised by the sets of equilibrium correlations $Q_\textrm{corr}(G)$ and $Q(G)$, respectively. We show that $Q(G)\subseteq Q_\textrm{corr}(G)$, and by exploiting the self-testing property of some correlations, that the inclusion is strict for some games $G$. We make use of SDP optimisation techniques to study how these quantum resources can improve social welfare, obtaining upper and lower bounds on the social welfare reachable in each setting. We investigate, for several games involving conflicting interests, how the social welfare depends on the bias of the game and improve upon a separation that was previously obtained using pseudo-telepathic solutions.