论文标题

meta-pde:学会在没有网格的情况下快速求解PDE

Meta-PDE: Learning to Solve PDEs Quickly Without a Mesh

论文作者

Qin, Tian, Beatson, Alex, Oktay, Deniz, McGreivy, Nick, Adams, Ryan P.

论文摘要

偏微分方程(PDE)通常在计算上要求解,在许多情况下,必须在每个时间段或各种候选边界条件,参数或几何域上求解许多相关的PDE。我们提出了一种基于元学习的方法,该方法学会从相关PDE的分布中快速解决问题。我们使用元学习(MAML和LEAP)来识别PDE解决方案神经网络表示的初始化,以便可以将PDE的残差快速最小化。我们将元溶解方法应用于非线性泊松方程,1D汉堡方程以及具有不同参数,几何形状和边界条件的超弹性方程。所得的元PDE方法在几个梯度步骤中找到了对大多数问题的定性准确解决方案。对于非线性泊松和超弹性方程,这会导致中间精度的近似值比基线有限元分析(FEA)求解器的数量级快,具有等效精度。与其他学识渊博的求解器和替代模型相比,可以在无需昂贵的地面数据的监督的情况下对这种元学习方法进行培训,不需要网格,甚至在任务之间的几何形状和拓扑变化时甚至可以使用。

Partial differential equations (PDEs) are often computationally challenging to solve, and in many settings many related PDEs must be be solved either at every timestep or for a variety of candidate boundary conditions, parameters, or geometric domains. We present a meta-learning based method which learns to rapidly solve problems from a distribution of related PDEs. We use meta-learning (MAML and LEAP) to identify initializations for a neural network representation of the PDE solution such that a residual of the PDE can be quickly minimized on a novel task. We apply our meta-solving approach to a nonlinear Poisson's equation, 1D Burgers' equation, and hyperelasticity equations with varying parameters, geometries, and boundary conditions. The resulting Meta-PDE method finds qualitatively accurate solutions to most problems within a few gradient steps; for the nonlinear Poisson and hyper-elasticity equation this results in an intermediate accuracy approximation up to an order of magnitude faster than a baseline finite element analysis (FEA) solver with equivalent accuracy. In comparison to other learned solvers and surrogate models, this meta-learning approach can be trained without supervision from expensive ground-truth data, does not require a mesh, and can even be used when the geometry and topology varies between tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源