论文标题
从虹膜观察到的光谱曲线中恢复热力学:改善了基于蒙特卡洛实验的不确定性的计算
Recovering thermodynamics from spectral profiles observed by IRIS (II): improved calculation of the uncertainties based on Monte Carlo experiments
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Observations by the Interface Region Imaging Spectrograph (IRIS) in the Mg II h & k spectral lines have provided a new diagnostic window towards the knowledge of the complex physical conditions in the solar chromosphere. Theoretical efforts focused on understanding the behavior of these lines have allowed us to obtain a better and more accurate vision of the chromosphere. These efforts include forward modeling, numerical simulations, and inversions. In this paper, we focus our attention on the uncertainties associated with the thermodynamic model atmosphere obtained after the inversion of the Mg II h & k lines. We have used ~ 50;000 synthetic representative profiles of the IRIS2 database to characterize the most important source of uncertainties in the inversion process, viz.: the inherent noise of the observations, the random initialization of process, and the selection criteria in a high-dimensional space. We have applied a Monte Carlo approach to this problem. Thus, for a given synthetic representative profile, we have created five randomized noise realizations (representative of the most popular exposure times in the IRIS observations), and inverted these profiles five times with different inversion initializations. The resulting 25 inverted profiles, fits to noisy data, and model atmospheres are then used to determine the uncertainty in the model atmosphere, based on the standard deviation and empirical selection criteria for the goodness of fit. With this approach, the new uncertainties of the models available in the IRIS2 database are more reliable at the optical depths where the Mg II h & k lines are sensitive to changes in the thermodynamics.