论文标题
部分可观测时空混沌系统的无模型预测
Deep Residual Networks for Gravitational Wave Detection
论文作者
论文摘要
传统上,通过匹配的滤波或基于小波的未建模搜索等技术检测引力波。但是,在具有非对准旋转的通用黑洞二进制文件的情况下,如果要探索整个参数空间,则匹配的过滤可能会变得不切实际,这将对重力波搜索的灵敏度和计算效率进行严重限制。在这里,我们使用机器学习算法的新型组合,并到达在特定环境中超过传统技术的敏感距离。此外,计算成本只是匹配过滤的计算成本的一小部分。主要成分是54层深残留网络(RESNET),深层自适应输入归一化(DAIN),动态数据集增强和课程学习,基于信噪比的经验关系。我们将算法的敏感性与数据集上的两种传统算法进行了比较,该数据集由实际Ligo O3A噪声样本中的非对齐二进制黑洞合并的大量注射波形组成。我们的机器学习算法可用于即将在天体物理有趣的参数空间的大部分中快速在线搜索重力波事件。我们在https://github.com/vivinisi/gw-detection-deep-learning上公开提供代码,ARESGW和详细结果。
Traditionally, gravitational waves are detected with techniques such as matched filtering or unmodeled searches based on wavelets. However, in the case of generic black hole binaries with non-aligned spins, if one wants to explore the whole parameter space, matched filtering can become impractical, which sets severe restrictions on the sensitivity and computational efficiency of gravitational-wave searches. Here, we use a novel combination of machine-learning algorithms and arrive at sensitive distances that surpass traditional techniques in a specific setting. Moreover, the computational cost is only a small fraction of the computational cost of matched filtering. The main ingredients are a 54-layer deep residual network (ResNet), a Deep Adaptive Input Normalization (DAIN), a dynamic dataset augmentation, and curriculum learning, based on an empirical relation for the signal-to-noise ratio. We compare the algorithm's sensitivity with two traditional algorithms on a dataset consisting of a large number of injected waveforms of non-aligned binary black hole mergers in real LIGO O3a noise samples. Our machine-learning algorithm can be used in upcoming rapid online searches of gravitational-wave events in a sizeable portion of the astrophysically interesting parameter space. We make our code, AResGW, and detailed results publicly available at https://github.com/vivinousi/gw-detection-deep-learning .