论文标题

在量子相关的合成空间中的芯片尺度模拟

Chip-scale Simulations in a Quantum-correlated Synthetic Space

论文作者

Javid, Usman A., Lopez-Rios, Raymond, Ling, Jingwei, Graf, Austin, Staffa, Jeremy, Lin, Qiang

论文摘要

量子系统的有效模拟器是开发量子计算机的努力的最初目标之一[1]。近年来,光子学[2]中的合成维度已成为一种潜在的强大模拟方法,它不受几何维度的约束。在这里,我们基于在芯片尺度上产生的一致控制的宽带量子频率梳子,证明了量子相关的合成晶体。用梳子模式固有的时频纠缠显着扩展了合成空间的维度,从而产生了近400 x 400的合成晶格,并具有电控制的可调性。使用这样的系统,我们能够利用纠缠光子之间的量子相关性演变来执行一系列模拟,展示了时间和频率相关空间中的量子随机步行,BLOCH振荡和多级Rabi振荡。该设备结合了整体纳米光构建结构的简单性,量子相关的合成空间的高维度以及芯片相干控制,这为大规模模拟量子量子模拟和计算的实现开辟了途径[1,3,4] [1,3,4]。

An efficient simulator for quantum systems is one of the original goals for the efforts to develop a quantum computer [1]. In recent years, synthetic dimension in photonics [2] have emerged as a potentially powerful approach for simulation that is free from the constraint of geometric dimensionality. Here we demonstrate a quantum-correlated synthetic crystal, based upon a coherently-controlled broadband quantum frequency comb produced in a chip-scale dynamically modulated lithium niobate microresonator. The time-frequency entanglement inherent with the comb modes significantly extends the dimensionality of the synthetic space, creating a massive nearly 400 x 400 synthetic lattice with electrically-controlled tunability. With such a system, we are able to utilize the evolution of quantum correlations between entangled photons to perform a series of simulations, demonstrating quantum random walks, Bloch oscillations, and multi-level Rabi oscillations in the time and frequency correlation space. The device combines the simplicity of monolithic nanophotonic architecture, high dimensionality of a quantum-correlated synthetic space, and on-chip coherent control, which opens up an avenue towards chip-scale implementation of large-scale analog quantum simulation and computation [1,3,4] in the time-frequency domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源