论文标题

具有双重标准,指数映射和关节限制的逆运动学

Inverse Kinematics with Dual-Quaternions, Exponential-Maps, and Joint Limits

论文作者

Kenwright, Ben

论文摘要

我们提出了一种新的方法,用于通过迭代的双重试验和指数映射方法来解决清晰的运动运动学问题(例如,性格结构)。由于双重问题是从规范中脱颖而出的,并为代表运动学变换(即位置和翻译)提供了一种直接且计算上的高效技术。双重定点能够在统一状态空间变量中代表翻译和旋转,并具有其自身的代数方程式以进行串联和操作。因此,可以通过一组双重试验变换来表示铰接结构,我们可以使用逆运动学(IK)来操纵它们来实现特定目标(例如,将最终效应移动到目标)。我们使用预测的高斯式迭代方法来解决IK问题的关节限制。我们的方法灵活而强大,足以在诸如游戏之类的交互式应用程序中使用。我们使用数值示例来证明我们的方法,这些方法在我们所有的测试用例中都成功地执行,并产生了令人愉悦的视觉结果。

We present a novel approach for solving articulated inverse kinematic problems (e.g., character structures) by means of an iterative dual-quaternion and exponentialmapping approach. As dual-quaternions are a break from the norm and offer a straightforward and computationally efficient technique for representing kinematic transforms (i.e., position and translation). Dual-quaternions are capable of represent both translation and rotation in a unified state space variable with its own set of algebraic equations for concatenation and manipulation. Hence, an articulated structure can be represented by a set of dual-quaternion transforms, which we can manipulate using inverse kinematics (IK) to accomplish specific goals (e.g., moving end-effectors towards targets). We use the projected Gauss-Seidel iterative method to solve the IK problem with joint limits. Our approach is flexible and robust enough for use in interactive applications, such as games. We use numerical examples to demonstrate our approach, which performed successfully in all our test cases and produced pleasing visual results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源