论文标题

约翰逊·林顿斯(Johnson-Lindenstrauss)的核心多体理论嵌入

Modewise Johnson-Lindenstrauss Embeddings for Nuclear Many-Body Theory

论文作者

Zare, A., Wirth, R., Haselby, C. A., Hergert, H., Iwen, M.

论文摘要

在这项工作中,我们探讨了约翰逊·林斯特劳斯嵌入(JLES)作为减少核多体方法的计算成本和记忆要求的工具。 JLE是在保持关键结构特征的低维子空间上的高维数据张量的随机投影。这种嵌入允许大型张量(例如核哈密顿量)的遗漏和逐步压缩到明显较小的随机草图中,这些草图仍然可以准确计算地面能量和其他可观察结果。他们遗忘的性格使得可以压缩张量,而不必事先知道人们可能希望以后可能要近似的观察力。这为使用太大而无法存储在内存中的张量开辟了大门,例如,以大型,对称的无限制碱基的底座完成了两种超过三个核子的汉密尔顿人。这种压缩的汉密尔顿人可以相对轻松地存储和使用。 作为第一步,我们分析了JLE对核基态可观察物的二阶多体扰动理论(MBPT)校正的影响。对于广泛的封闭核,模型空间和最先进的核相互作用的数值实验证明了所提出的方法的有效性和潜力:我们可以压缩核汉密尔顿人数百万到千倍,而只会在基地可观察的情况下会产生1 \%或更少的平均值相对误差。重要的是,我们表明JLES捕获了高度结构化的哈密顿量张量中包含的相关物理信息,尽管它们具有随机特征。除了大量的存储节省外,所实现的压缩也意味着当压缩的汉密尔顿人被用于高阶MBPT或非驾驶多体性方法时,计算工作量的多个幅度降低。

In this work, we explore modewise Johnson-Lindenstrauss embeddings (JLEs) as a tool to reduce the computational cost and memory requirements of nuclear many-body methods. JLEs are randomized projections of high-dimensional data tensors onto low-dimensional subspaces that preserve key structural features. Such embeddings allow for the oblivious and incremental compression of large tensors, e.g., the nuclear Hamiltonian, into significantly smaller random sketches that still allow for the accurate calculation of ground-state energies and other observables. Their oblivious character makes it possible to compress a tensor without knowing in advance exactly what observables one might want to approximate at a later time. This opens the door for the use of tensors that are much too large to store in memory, e.g., complete two-plus three-nucleon Hamiltonians in large, symmetry-unrestricted bases. Such compressed Hamiltonians can be stored and used later on with relative ease. As a first step, we analyze the JLE's impact on the second-order Many-Body Perturbation Theory (MBPT) corrections for nuclear ground-state observables. Numerical experiments for a wide range of closed-shell nuclei, model spaces and state-of-the-art nuclear interactions demonstrate the validity and potential of the proposed approach: We can compress nuclear Hamiltonians hundred- to thousand-fold while only incurring mean relative errors of 1\% or less in ground-state observables. Importantly, we show that JLEs capture the relevant physical information contained in the highly structured Hamiltonian tensor despite their random characteristics. In addition to the significant storage savings, the achieved compressions imply multiple order-of magnitude reductions in computational effort when the compressed Hamiltonians are used in higher-order MBPT or nonperturbative many-body methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源