论文标题

驱动器数字双胞胎用于在线预测个性化车道变更行为

Driver Digital Twin for Online Prediction of Personalized Lane Change Behavior

论文作者

Liao, Xishun, Zhao, Xuanpeng, Wang, Ziran, Zhao, Zhouqiao, Han, Kyungtae, Gupta, Rohit, Barth, Matthew J., Wu, Guoyuan

论文摘要

在可预见的将来,连接和自动化的车辆(骑士)应该与人类驱动的车辆(HDV)共享道路。因此,考虑到混合的交通环境更为务实,因为骑士的计划经过精心策划的操作可能会被HDV中断。在人类行为具有重大影响的情况下,骑士需要了解HDV行为以采取安全的行动。在这项研究中,我们开发了一个驱动程序数字双胞胎(DDT),用于在线预测个性化车道变更行为,从而使骑士能够借助数字双技术来预测周围车辆的行为。 DDT部署在车辆边缘云架构上,云服务器基于历史自然主义驾驶数据对每个HDV的驱动程序行为进行建模,而Edge服务器则通过云上的数字双胞胎从每个驱动程序中处理来自每个驱动程序的实时数据,以预测车道更改操作。提出的系统首先在人类的共同模拟平台上进行评估,然后在实施现场实施中,并通过4G/LTE蜂窝网络连接三辆乘用车。在车辆越过车道分离线之前,可以在6秒内平均识别车道变化意图,并且在4秒预测窗口内,预测轨迹和GPS地面真相之间的平均欧几里得距离为1.03米。与一般模型相比,使用个性化模型可以提高预测准确性27.8%。可以在https://youtu.be/5cbsabgiodm上观看所建议系统的演示视频。

Connected and automated vehicles (CAVs) are supposed to share the road with human-driven vehicles (HDVs) in a foreseeable future. Therefore, considering the mixed traffic environment is more pragmatic, as the well-planned operation of CAVs may be interrupted by HDVs. In the circumstance that human behaviors have significant impacts, CAVs need to understand HDV behaviors to make safe actions. In this study, we develop a Driver Digital Twin (DDT) for the online prediction of personalized lane change behavior, allowing CAVs to predict surrounding vehicles' behaviors with the help of the digital twin technology. DDT is deployed on a vehicle-edge-cloud architecture, where the cloud server models the driver behavior for each HDV based on the historical naturalistic driving data, while the edge server processes the real-time data from each driver with his/her digital twin on the cloud to predict the lane change maneuver. The proposed system is first evaluated on a human-in-the-loop co-simulation platform, and then in a field implementation with three passenger vehicles connected through the 4G/LTE cellular network. The lane change intention can be recognized in 6 seconds on average before the vehicle crosses the lane separation line, and the Mean Euclidean Distance between the predicted trajectory and GPS ground truth is 1.03 meters within a 4-second prediction window. Compared to the general model, using a personalized model can improve prediction accuracy by 27.8%. The demonstration video of the proposed system can be watched at https://youtu.be/5cbsabgIOdM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源