论文标题
通过时间平均的经典阴影,揭示了强相关电子的微型跨阶段和相变
Revealing microcanonical phases and phase transitions of strongly correlated electrons via time-averaged classical shadows
论文作者
论文摘要
量子计算机和模拟器有望实现密切相关的量子系统的研究。然而,令人惊讶的是,他们很难计算基础状态。但是,它们可以有效地计算封闭量子系统的动力学。我们提出了一种研究量子动力学强相关电子的量子热力学的方法。我们定义了时间平均的经典阴影(TAC),并证明它是von Neumann合奏的经典影子(CS),即时间平均密度矩阵。然后,我们表明,一种无监督的机器学习算法的扩散图可以有效地学习使用TACS使用CS \ EMPH {和状态轨迹}的一维横向场的相位图和相变。它通过学习特征从状态轨迹中做到这一点,这些特征似乎是易感性和熵,从微域相图中的一条路径上拍摄了90,000张照片。我们的结果表明,量子模拟器的镜头数量较少,可以产生量子热力学数据,并具有量子优势。
Quantum computers and simulators promise to enable the study of strongly correlated quantum systems. Yet, surprisingly, it is hard for them to compute ground states. They can, however, efficiently compute the dynamics of closed quantum systems. We propose a method to study the quantum thermodynamics of strongly correlated electrons from quantum dynamics. We define time-averaged classical shadows (TACS) and prove it is a classical shadow(CS) of the von Neumann ensemble, the time-averaged density matrix. We then show that the diffusion maps, an unsupervised machine learning algorithm, can efficiently learn the phase diagram and phase transition of the one-dimensional transverse field Ising model both for ground states using CS \emph{and state trajectories} using TACS. It does so from state trajectories by learning features that appear to be susceptibility and entropy from a total of 90,000 shots taken along a path in the microcanonical phase diagram. Our results suggest a low number of shots from quantum simulators can produce quantum thermodynamic data with a quantum advantage.