论文标题

基于成对等级学习的无参考点云几何质量评估

No-reference Point Cloud Geometry Quality Assessment Based on Pairwise Rank Learning

论文作者

Su, Zhiyong, Chu, Chao, Chen, Long, Li, Yong, Li, Weiqing

论文摘要

对点云的客观几何质量评估对于评估广泛的基于点云的解决方案的性能,例如去核,简化,重建和水印至关重要。现有的点云质量评估(PCQA)方法致力于将绝对质量得分分配给扭曲的点云。他们的表现非常依赖于培训的主观基础真相分数的质量和数量,这些分数挑战和已被证明是不精确,偏见和不一致的。此外,大多数现有的客观几何质量评估方法都是通过全参考的传统指标进行的。到目前为止,尚未研究基于点的不引用几何质量评估技术。本文介绍了PRL-GQA,这是我们所知的第一个对点云的无参考几何质量评估的第一个成对学习框架。拟议的PRL-GQA框架采用了暹罗深度建筑,该建筑将其作为输入一对点云并输出其排名顺序。每个暹罗建筑分支都是几何质量评估网络(GQAnet),该网络旨在提取多尺度质量意识的几何特征,并为输入点云输出质量索引。然后,根据预测的质量指数,引入了一个成对的等级学习模块,以对一对降级点云的相对质量进行排名。扩展实验证明了拟议的PRL-GQA框架的有效性。此外,结果还表明,与现有的全参考几何质量评估指标相比,微调的无引用GQAnet的性能性能竞争性。

Objective geometry quality assessment of point clouds is essential to evaluate the performance of a wide range of point cloud-based solutions, such as denoising, simplification, reconstruction, and watermarking. Existing point cloud quality assessment (PCQA) methods dedicate to assigning absolute quality scores to distorted point clouds. Their performance is strongly reliant on the quality and quantity of subjective ground-truth scores for training, which are challenging to gather and have been shown to be imprecise, biased, and inconsistent. Furthermore, the majority of existing objective geometry quality assessment approaches are carried out by full-reference traditional metrics. So far, point-based no-reference geometry-only quality assessment techniques have not yet been investigated. This paper presents PRL-GQA, the first pairwise learning framework for no-reference geometry-only quality assessment of point clouds, to the best of our knowledge. The proposed PRL-GQA framework employs a siamese deep architecture, which takes as input a pair of point clouds and outputs their rank order. Each siamese architecture branch is a geometry quality assessment network (GQANet), which is designed to extract multi-scale quality-aware geometric features and output a quality index for the input point cloud. Then, based on the predicted quality indexes, a pairwise rank learning module is introduced to rank the relative quality of a pair of degraded point clouds.Extensive experiments demonstrate the effectiveness of the proposed PRL-GQA framework. Furthermore, the results also show that the fine-tuned no-reference GQANet performs competitively when compared to existing full-reference geometry quality assessment metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源