论文标题

加强的Alexandrov最大原理或蒙格解决方案的统一Hölder连续性 - 右侧有限的Ampère方程

A Strengthened Alexandrov Maximum Principle or Uniform Hölder Continuity for Solutions of the Monge--Ampère Equation with Bounded Right-Hand Side

论文作者

Gehring, Lukas

论文摘要

本文是关于Monge的凸解决方案$ u $ - Ampère方程至少在带有Dirichlet边界数据和非负界右侧的二维开放式凸面域上。 对于具有零边界数据的凸功能,Alexandrov最大原理$ | u(x)| \ leq c \ operatatorName {dist}(x,\partialΩ)^α$等于(均匀)Hölder连续性,具有相同的常数和指数。 convex $α$-Hölder连续功能为$ w^{1,p} $,对于$ p <1/(1 { - }α)$。我们证明了hölder的连续性,指数$α= 2/n $ for $ n \ geq 3 $,以及$ n = 2 $的任何$α\ in(0,1)$ in(0,1)$,前提是边界数据满足此Hölder的连续性,并表明这些指数的界限是锋利的。唯一的手段是绑定Hessian在$ n $维圆柱上的特定显式功能的决定因素,并使用Princple比较。

This article is about the convex solution $u$ of the Monge--Ampère equation on an at least 2-dimensional open bounded convex domain with Dirichlet boundary data and nonnegative bounded right-hand side. For convex functions with zero boundary data, an Alexandrov maximum principle $|u(x)| \leq C \operatorname{dist}(x,\partialΩ)^α$ is equivalent to (uniform) Hölder continuity with the same constant and exponent. Convex $α$-Hölder continuous functions are $W^{1,p}$ for $p < 1/(1{-}α)$. We prove Hölder continuity with the exponent $α=2/n$ for $n \geq 3$ and any $α\in (0,1)$ for $n=2$, provided that the boundary data satisfy this Hölder continuity, and show that these bounds for the exponent are sharp. The only means is to bound the Hessian determinant of a certain explicit function on an $n$-dimensional cylinder and to use the comparison princple.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源